{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Einstein Tensor calculations using Symbolic module" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import sympy\n", "from sympy import symbols, sin, cos, sinh\n", "from einsteinpy.symbolic import EinsteinTensor, MetricTensor\n", "\n", "sympy.init_printing()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Defining the Anti-de Sitter spacetime Metric" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "syms = sympy.symbols(\"t chi theta phi\")\n", "t, ch, th, ph = syms\n", "m = sympy.diag(-1, cos(t) ** 2, cos(t) ** 2 * sinh(ch) ** 2, cos(t) ** 2 * sinh(ch) ** 2 * sin(th) ** 2).tolist()\n", "metric = MetricTensor(m, syms)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Calculating the Einstein Tensor (with both indices covariant)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnwAAABkCAYAAAAc9+2JAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4Ae2dW67dNpqFtw0/N3wB+r0SoAfgywhsz8BxgH63M4MEfjr1FsQzcOW9gYo9A1eNwI4H0IBrAA3YOegBdHp9OqQg6VASpS1pS1uLADcpXn8uUuLaP0npxsXFxf3D4fC7bMq8++tf//pdKsJhRsAIGAEjYASMgBEwAutAQHztsyT5JiWN4m7cqkS8lp/EVfOv6oX9RsAIGAEjYASMgBEwAqtE4JeEVE8V9ozwKuF7IwY4G8FT2bDOH6hU5rYs178o/B8E5BiljY35ovTfypJ/NplzZFpbGmO0th45b3k83s67f926bSPg+3Pb/TdUevX335p5FEZQQfhuNiPnuFaFELyf5EYL8Xsr+15hhSB99Sody84fQhloI38K+ZPqy77yzjHeGJ1jr663TR5v6+0bS2YEfH96DDQRWITwqdKXWA3AKrn7LQjzqilU81r5yH9b7rsYJ/+l/Fy/iWF7do3Rnnt/+bZ7vC2PuWs0ArkI+P7MRWpf6ZYifJ8EKwQNW5hA2OJln8vBEcpomg8KeKKy0CDu3RijvY+AZdvv8bYs3q7NCAxBwPfnELR2kra6h2+2JouQsU/vTrUChUVtX46G7onyXlubVlgkkMSX2r9qPTvyG6MddfYKmurxtoJOsAhGoAUB358twOw5eCkNXw1jkT0GIwcwfpA/ReTK9IrP0d7dLTPs0GOMdtjpJ2yyx9sJwXfVRqAHAd+fPQDtOPrWkm3XQOSdf5C9R7Is0X6U7TORzEVtXjX913CRQwqr+c7Nb4zOrUfX3R6Pt3X3j6XbNwK+P/fd/62tX5rwQfKKvXgifyzp/i73O9ljl2PvtbbQEREBYxSRsLsEAh5vS6DsOozAOAR8f47DbdO5sgifCBkatH/KDtGkQeQKcpdCCJIni9burdw7wZ9KGrV4qbj4T4b38u3ZGKM99/7ybfd4Wx5z12gEchHw/ZmL1M7S5RI+iNmDsdiIzN0nr9xPjTJY0mWJF5vU8kEEZRWdJJuRgO765cvGiOFhsxQCHm9LIe16jMBwBHx/DsdsLzlmP7ShwQcp46XJLN9GgjYUX075fpPIFDV82V/rSJRxLkHG6Fx6chvt8HjbRj9Zyn0i4Ptzn/3e2eolCB/aQWxcwq0K9DBc9BE2vsoR01bzo3X8xD+aauBO/cZopx1/omZ7vJ0IeFdrBDIQ8P2ZAdLeksxO+AKgxWfQquCKpHFoA40fr2YpCBsaQNk/ZdEIlkbXvLrlq1zyFEZ+8j6XfXEVsu9fY7Tv/l+69R5vSyPu+oxAPgK+P/Ox2lPKrD18xwLC4JPlixjVlyyzRPtUYaV2T37267EfL/W6FrR5rxRPPgyvdnms6+a+wCJypz/GaKcdf6Jme7ydCHhXawQyEPD9mQHSnpLcuLi44EAFGrVvA9naU/vdViNgBIyAETACRsAInCUC4nUv1bA3cm8staR7lkC6UUbACBgBI2AEjIAR2AICJnxb6CXLaASMgBEwAkbACBiBIxAw4TsCPGc1AkbACBgBI2AEjMAWEDDh20IvWUYjYASMgBEwAkbACByBgAnfEeA5qxEwAkbACBgBI2AEtoCACd8WeskyGgEjYASMgBEwAkbgCARM+I4Az1mNgBEwAkbACBgBI7AFBBZ58fIWgNi7jHpHD18ueRVw+Ca4LxRefAVl7/i4/UbACBgBI2AEtoyANXxb7r1pZf9F5O6nYL9T0V9la5+4y6lO+SNZ7Eyem66zEEcaASNgBIyAETACWQiY8GXBtItEL0XCnlRa+ov83yiML7FkGaX9UQlz01M26W2MgBEwAkbACBiBmRFYdElXEzwkAvNF9ltZtEp8O3fVRjKitfohCMnSJ9fIXn4HOMS1OhtoO+1LfcO4tU3VCLXvma7vyX1dDW/zg53sffLJvmtL5/B1I6C+2+Q9vW5ULZ0RmAYB35/T4HgupSz2LV0NPJYHf46Tu1yIE2FP5V8t6QtyQu4i4TvIX3ybTrJ/J38vWVGazbVdMjORQ8Yg5p1GaejLf8rlY93XTIhP9rXiCH8s13sFryG37oDQd5u7p9eNqqUzAtMg4PtzGhy3XorGwbLf0g0V3pZbkiP5meC5frNyQAGL5U40WNH8FjzxkEMMv+Zuse2SmWVZ2pskcNcaKW2nwrr6kaVilnBTxJ58UUuUKNpBa0Rgi+N6jThaJiMwBwK+P+dAdftlLrWHj0MAnxJwfVDYEw1ONERrNcgNOS01UJK39GcIvam2q23FcrXa9WBAO58r7d86sHiquFT/H0I+8q95DHQ0bbdRmxrXu+0lN3yvCPj+3GvPd7R7qT18aHhShCASJ+JL7V+HvItHiYiwT+9OtWKFRW1fl1YrZtlM29WuuDcRgnbQNZq+S7kpzVzRPsXRvtb4IpFIvdyu/iX/c9nUGAlF2FkZApsZ1yvDzeIYgSUQ8P25BMobq+PW3PKKEORobu7OLcdU5QeCwxLkD/J3EpRj2x7yU1ckxjTjg8JL8lRJ85lIGfbcvVV4eaBEfogbDwDKif3xvcLLJVv5IXsQWF7NQnoM+xZ/KnztP/yTLOuKyVQG9ZGf+iibAxpv5SJ/82AH+SGZnXgq3mYFCKj/4hjqkmYz93RXIxxnBLaGgO/PrfXYcvLOTvjUlPjgh2w0De96w+RMIFcpT/SrmyiSpkcSgeXJjxmijG676oMkcaCBlx8XBE8uJAoy9y/ZT7LIBImqHXxR+HviZF/Lgi2HTgqtnfyF0XV5CCUEURdpcUuTSFfGBc9Dudc0ncoHieMkLtpQlu1r9Ye80YGs0jabbSAwelxvo3mW0ghsGgHfn5vuvvmEX4Lw5Uh/LyfRKdOIsEDyin1ogcT8LjfrlG6P3G1th8hB7Eptnq4jMb4MZZLmndI0l1TRyiEfpIub/6H8HJqJ+RRUX2JVXG3ZmgSZBpkicU9lgegVuKUiQxj5Y9s6kjlqQwi0jesNNcGiGoGzRcD359l2bXvDbrZHTRbTRQbiP5Evk9W2QEEiR5AwyBPati6iMqrtocz7Kr+2VEq9sndkIYLEowX8IFsziosEi2VbykCOP+RH8/ejLCdm+5Zqa2V2XNCHYNFm0NzV2pFICGGlLTbbQGDUuN5G0yylEdg8Ar4/N9+F8zRgdsInYhHJQIoYxbCmhmqe1o4oVfKzNAq5apq4pNu6FHlE2yP56SLCMU3Etykf11HuB/Kzbw5yxp7Az5Lt2jKswic1qoP+Rc73PQX3kcae7I5eEoEjxvWSYrouI7BLBHx/7rLbsxoN4ePfwH/J/l9WjnGJ0PBEglItgYke06cBukq18G8gLOxpY3k0ktOhUoxpeyTAXS89jmm65EITWOAul8MYED+Wbtm/91LXkRAObVM1PXK0ycD+voPqKftX/lRawrr+lVKMzboQGDOu19UCS2MEzhcB35/n27dDW/bfygDHO0D4IF3/GfxyZjHsNSsm/0bpEBAOH1w2wldxGeRCNpZSmzLG9pRkpkXowW0PdX1SebGOWtGK5wsYxCPTtcMQiotaR7R4kDpeHl0YypblNCzL0snyr1Jm/0LUUmSeAmr791TvM4VFkk98NIRFAhvD7K4bgcHjet3NsXRG4KwQ8P15Vt15VGP+Q7nheAXhO6qknMyBYHwNE36RRf7b8vDutRc5ZZwwDXvdakuSoR3Iz6tZCiJIe2T/lG2ecoVcjWk7rzthr11J1nR90DVLspA9zGNZXloMqasa0nBCN6Z7JT/yVg3XfWS1mr7NTx2cXE4ZiGBB5EL9bV/bgPjXME4V5rD1IKD+HDuu19MIS2IEzhQB359n2rFHNmvJU7pM6hCPqA2CJPAN1UhKjmzKPNm5cWR5rUh1zxtt4FUoJWGSP76gOO7tqwo0uO0qj+XYv6iQX+WSvyCWct8QR+Fy0Y4Sx3JtjEc2rqNshDM5V79mcU/XvKplCq0aRK2KjS5LA1lG3oK0ym2+fy8mRCMJSbXZFgKDx/W2mmdpjcCmEfD9uenum174GxcXF2iH0Ep9OxEBmF5Kl7hqBDRueI8er6gZTN6VB4LK6eGu/Yqrbr+FMwJGwAgYASOwRgQ0t6JwQfFy4+YaBbRMm0MA7VzzRc65jUALaO1eLlpOZwSMgBEwAkZgBAImfCNAc5Y6AvrnwJIx+/PQ1mWbkJ585LcxAkbACBgBI2AEZkLAhG8mYHdYLIdM2vbytcFBevLZGAEjYASMgBEwAjMiYMI3I7h7KlpaOg6HcGq5dqq4DYOQrjzl3JbO4UbACBgBI2AEjMDxCCx5Svd4aV3CqhEQiePUb9byrNJmpVt1gy2cETACRsAIGIGNIGAN30Y6ymIaASNgBIyAETACRmAsAtbwjUXO+YyAETgbBKRxvq3GvAoNioePXig8vt/ybNrqhhgBI7BPBCB8/xaaHt19IuFWGwEjsGcEeBF5+Woh+TlQVLyfdM+guO1GwAhsHoF/jy2A8P1vuIhujLNrBIzABhGwtmpUp70Ubm9l4xdqeDckYfdlB79QfJQEzmQEjIARmB6B/4lFeg9fRMKuETgfBNBW8Xk9LK+9+Spb+8ZzTlOVNy5tdibPTddZyOkj0e6lPos4SLJjsTg2/yBhndgIGIFdIWDCt6vudmN3ggCaqSeVtqKt4gXXfEYxyyjtj0qYm56ySb9ZI/n5ZnZ1vx4EkO9ZZ2v3Aga5mLVhtXks2xrmcCNgBE6LwKKHNvRAjJ/Q+qJm8+1UNBG8ysNmIgSMcTeQwgetVdyrxUZ9rhmHcSmvuwDFbgDjo7RVat8zNfOe3Ne9YFzh8Q+lZenzmey7nDxdaVQGfYJGEg3lqNf3KB/E61dZyvpN17HPddltQl4w4OPzWUZ5BmHWVqjKmRTLtnocvg8ENJ485+6jq7NaeTMr1QSJNPB4gH+Qy0OciYRvqL6XnweyzQQIGONuEIUPBC8udeJCAt7KMg6ZsHvNFjCWjKO1VcoLRq/kcn9eM8TLfpat3be65p4mH/mPNZRNOdmEq1mh5PgkS36Ws+8249uulYe6mSQfyH/Zlq4arnSdmFXT5vhV3pRY5lTpNGeIgMaR59wz7NdjmnTzmMy5eTXw+PoCE0X5719+HqZcD/0cV261u0pnjLO6m3HIcmeV3P0WcsZXcrQWtEWMJTOariHaKshO1z3JUjHLjinNPPmiRkHecUZlo229IzdbK9dRU0rOZHLVV5A9uU9lL2XRWhLWZ/ow68ufip8Ey1TBDjt/BDRuPeeefzcPbuEihE9SsXE8tRfmg8KfaHDyD9nmOASMcT9+jEH+aGALo7FX+mNYh7spjANZGaStUtufK1/XMupTpUndy4eQj/xH388qY0i/dHRZXpTqg9hBsn6WH6IHUYZwoiHsM32Y9eW/Fq/66YNJsLxWuAP2gMCmnlV76JA1tHGpPXxoBVKTSHyoE19q/9YAzAZlMMY9naZJtNAcVZMpLGr7urRaMctmMFa7IDDsTYSgHeRCYNBatWq8FEf7WuMpR6bvXiX/c9nU/U7+tRqWvyCquKURJp1axkzMyvIGeraK5cBmOvkMCGzmWTVD211kCwK3WsInC9YDMefffvYem8kEO6OCjPG4zgyTNRqwH+TvJCjHYhzyU1f8k4PQ7Gkt/+hU0nwmUoaDTdV3wx2UBuLGw5xy4r31vcLL/W7yR20V+xRJj4G4JPflFbFXP2gFrh1eURnUR37qo2w0YOx9RH72m1UN+SGZrXgGmZJtUBzlUzYuBxiQ6RDyEM6zgmV4sIxk/ZH8KVkUfGVCua3pFX8nph3oJjGjjCDz9/LS1o+6TpJHhcf46tigiF4sSWRjBKoIaDzF50I1uOn3nNtEZAfXtxZoYxxYzYcZVcflkpwBuoCom63CGA/oujARM8lCFFie/JiRfTTGqg/yguaIT3UVBE8u9UPmild/yL3PtSz7x0otm/wcKIFgvZblPim1dvIXRuFNIjFKW6XCHspe03SqfIgH5AvCxBaMQmsof8pAVmlb0ihvZxsUT9s5MBFJb1GOrumnb+X+IZe+4ERwQTblgt3vct/JltgpLBrqRO7c9DFfjpvELGZUnZBu+p+DLtgaQdY1srMn8hrRJo9sK5aKszECKQS4PzCXV07t13NuDY59XdxcSXPvrUSOcxbDGIfe1eTKCU4IFNqZv8tCFqL255gx0IYxRA5iV2rzdA0JwcSHMmlShAWtHCQPYgC5eCh/zKvLwlTLPSieAw83mjYm7nApN04IqWSt+/cqicnflK8SndcGZUgRN8qBnJfkjQC1EzKIaSNHYFZqHDPSX5WW99uKWaxHLm2B0NWIucLpU9pSytaosg/LRnJfGoFsBNqeVdkFOOH2EFiC8HVNIPGfyJftQbcqiY3xyO7QZAtZupRF29ZFVEZhHMpkYq9pcKhXFmIGEST+G9kPsjWjuE8hgGVbykCOP+RH8/ejLNqhvqXaWpkdF9yPYNFmIFS1diQSQm5oS9JI1inaAOlLmbb+G5o+VXZbWB9mMR+aU/qKvj7IBSP6tKbxI65iOrGspLPXCFQRGPWsqhZg/3kiMDvh0wMtTiCph3EMa/s3f56oT9wqY5wHqHCKpy+bGSIhaNMQHY7AOJKfrj81MU28V5rycV0QBbkPZCEJEA32sbFMeG0ZVuGTGtXBvYqc73sKziFAJ2lDj9yzRgs//lhg2C8Klrh9RD0Hy6JQ/xiBiIDGVXyOMM6aJoZ5zm0is4Pr2QlfwJB/9XFSq8LKAw3TpzW4SuXfLgSMcQc6YZJlbxvLt/Gh15EjGTUG4/hg5QBGm4lpuuRCE1jcQ3LZFwZp4qABy4QvdX2/rfAB4cjRJgPLyQfVU96r8qfSEtaqYVCeuduAmEuaLsyackD6OMHMEn0f2SNvJ5YksDECLQiMeVa1FOXgc0FgKcLH/qRiwmgAx6TFfqrLRrgvhyNgjDswC2OMccZSanO8xbFZkpmWogZjHOpiWTbWUSta8Rw+IB6Zrh2GUFzUOqLFg9TxQtXCULYs+78gEsnyr1Jm/0LUUn/MKKC2f0/1PlNY/MNGfDSERQIbw6ru3G2o1rWEvwuzZv3sF70tyzjKMX1Y5pThNPtEYPCzap8w7avVixC+MCl9DZNEgbD8PPj4t/tiX5DP01pjnIUrWpXakmQYk4xFltggXQe5fBXmT1k0gqXRNeRqzDjmcAj7t0qyRqG6ZkkWsod5LMuLdiFEVUMaDpjEdKnPlyF/H1mtltnmpw5OLqcMRLAgcpKF+mhPitjxJ66GcaKw3DZQT9NAgoaYoemHlE3aLsyaZUVCz3jIMTlY5pTjNDtDQPfm2GfVzpDaV3NvLdhcHl486KMGgYnlsa7jRLagKGdblTHu6FoegrJPZKt73hiPvAqlJEzyxxcUx7191VIHY6zyWI79iwr5VS75C2Ip9w1xFC4XTTdxLNfGeGTjOspGOA/y6hcY7umaJcIU+VLUIANRq2JTzQxZRt6CtMptO2yARhKS2mY626ByIbzkLzSWukamgjCHcOLpH8KRiXSRQEHaH8l+JxvLyUqvMsaaLszKMiUPbULeu7L80a2d2NV1yvRhmcrjMCMQERj8rIoZ7Z4nAjcuLi54IKLJ4B1XU0wa54mUW2UEdoCAngG8+w3CNPiPmPJAUDk93LVf8exQ7MNM8ZC9gtzLD4mDJPKuwVaMFbdLLM9ucLhBRuDECOhZwp90nj83bp5YFldvBIzAuhCAnORon1JSo8Ei/95MK2Z6yP4oMKqaXLS1aDlf9YC0Vyx7YHG0ETACYxEw4RuLnPMZgTNEQASFJWP256FhyjYhPfnIvyvThpnCIXt8oaS5cgJGHNYpMJbLKktpQvgusSxBsMcIGIHJETDhmxxSF2gENo8Ae+La9vK1NY70cS9dW5pzDq9hFkgb+zKvLdsqDO0dJ6vR/KU0onvH8pzHidtmBE6GgPfwnQx6V2wE1otAICwccOnV2CkNe0RSmqz1NnAGyYZg1la9sWxDxuFGwAiMQSA8U4o9fCZ8YxB0HiNgBIyAETACRsAIrByBKuHzku7KO8viGQEjYASMgBEwAkbgWASWfA/fsbI6vxEwAkbACBgBI2AEFkdAmrLbqjSero+H2l4onFP3mzAmfJvoJgtpBIyAETACQxE4h0l6aJudfjYEeMF9+coq+TlcVbzDeLYaJy7YhG9iQF2cETACRsAIrAaBzU/ScyBpIjwK1ZfC7a1s/PIRJ+wJuy977TT+qBpmzuQ9fDMD7OKNgBEwAkbgZAgwIfN1k2iYpHnHYe3dhzFyRy5EmM82Ynml0FfZ2rfDd4RFblPR7qU+t5mb/+TpTPhO3gUWwAgYASNgBGZCYJJJWqQo7tnKFnNMnuzCj084CRHObWNuuuObNV8JagPfYq/u12Ns8Z30Qdq9Y7E4Jr8J33zjwyUbASNgBIzACRHQ5Hj0JK0y+GLKGI0gmkTyrtEcTYQH4rJmLAb3j9rOeHgm+2BI5oGYtRU9GstF38Onxsa3yn9RS/jAOmrl5meH2hrp8AwEjHEGSE4yGQIeb5NBebKC1IdoryAAGE4ics2zOe5VIrzTTD0OgkwsMbLk2Pvy707hQqTKYZJ+K/tA/qqmpjW70jGpP5LL11GSRnGQunuy4PazrkuNT4hDC8SXVVZrJB9zM5/7Y17uNUrXi0uzEOUBp0mwUFlgfdT4UBmMh19lKes3Xcd7QJftJtRdfA1H/qxxRGlKOxizNilUVjaWSsuL8YsXL99sK3DqcFVK53yQyw38Wn5uoPfyA7bNBAgY4wlAdBHZCHi8ZUO12oTqQwhe3MuFy6QHKeLZzATVa2YaB8wLyDZIg9ImrGSkPEjNELJH/a+Ut4vsvVeay5DmhfxgVxqFM9dRBmWt0ki2Qdqq0JZWXIiX/Sxbm9t1PSUWR48PycOnDxlf7F+8m9M5oU38GXoqS79zYKPWzlQ5StM7llL52sJU3igsb7YVOGW4hINhMgjKfznyXyqs+J7klHXttSxjvNeeP027Pd5Og/sMtfJsZj9Xldz9FuqJ7xxrrXaucaBy0S7ekZuldWkVUBEqgwl58CRNHlk0OUmjcosVK7mFBlIuc1rqQAhlFGmTBZ0wMGIjEbKJcGhLKy6K55AMOKRW7ybBQmVPNj4ka0pOBddNwAr50eJC9CDKjE8IY5/pHEt9mVviB2O5COGTsJwCKtXcFeE/yM/3Olf776ci69q9xnjtPXRe8nm8nUd/8lyGqGALo+dx6Y9hHe5s42CgHEkRVQZkb+wk/Vz5k8vJCmeyZ1ktReSoszShDMpa1TwneZBzDBFuxSU0+qnc1Hx/mBILlTVknJb9cYSHVUrILG60/FnKkaMPs8FijcFyqffwAVLqxolAEV9q/wa33BlAwBh7HCyJgMfbkmjPVJcmjUJTUi1eYVHbB1HqM2sfB0zMEC3c0qiNnZpDxdOuLs3PK+IDfkW58kMCManlQcp6LpuaB8mzqJGskQizjB/lBpPW5WsEVNo+XEhGmq75fFVYIHCOUdvv5KRrpsnErJkt93oQlrdySx2bTo3lZuszqRukL4/jAwLG2ENhSQQ83pZEe9m6wuSE1uoH+TvJyTHjQHkhGRAD/vTHOeJ7hbO0CBlhLxzuP3SNFvEglzyEM1+w7IyckZw+kp894uxtKo2uR03SKoA6k4dWVCbyUm+THCEvJkUUKQvNVw6mtAtcoqFdJYEK9ZPmc0jAQYvqC4EPStOKb8gziggrbxIX1UdfQhjBBhxY8qSvrvWJwnqx6JJfcZOND8lSmlBu53gqEw/zJDGjiNDO7+UFv4+6Tv4RUXiMr44LiujFkkTR3IqeGV1uTkxTUMLi2jeDxGY8AsZ4PHbOORwBj7fhmK06R5h4mFQgTizHfcwQeNQ4UF0874ulxGodcbKTC2GC+EVCUyTTNXJ9K/cPudTNqdKC4Mm9r+vf5b6TTREuRQ8yD5W6TcPJvkdMkxCCHSZVP20B31YjuSEyEDG+z1oQPLnkgcwV73uTSzshUhwaKOuRn0M2kKzXsp34Ku9BacYS4SQuKg8sIOcQpidyIbdtphML5e2UX/FzjA/qRO45xlMSswiO6kTLSt9z0AXb/NNCn7MnsjneKKITSxJUzc3qxQn9HGm3mRcBYzwvvi69joDHWx2PVV9pMuHEImQBbcTfZSFPTN7HmtQ4YAJ8qPKZZKum1GKFwJLQVBPJDxktJ2fiVFbcM9ZJqkibaZAtKiSaWSKZ4aQqZKywSsSePk5upuSmrGZ7m+VC5JqvLYl5LkNi0qRILdpGSDTkIBffUOQgpwsXCmrdv1eppQ+LXPlTOFPNmPHBeCy1r/JPOZ5aMYv1yKUtELqahk/h9CdjvZRN11XTh2U17eFW7WqeCwRqM3dDxJe2BA7PQsAYZ8HkRBMh4PE2EZBrLEaTC4QCggGR4aRsJBtNcUeNA5WHJoi8f+CXy6tNqLO5RNqsr3rNpJ4yTK5TGOamtnZDSMqlZiqT7NT7TPZnrhOGCR0tTtKE/EzuTe0OJBhLHcRTxgeuq0ZxEHaCWBZHY3QsvtXiq/4uXEgH4S7krWZq+PuwOMX4mHM89WEW4UGjzD2Hppb+pK+L/owJEm4nls30N5sBU19L6HjTpG7EGIbQNiMRMMYjgXO2UQh4vI2CbZWZ1Jfx9RJN+eIE2KoxO3IcPFCFkBsmw2I/msprW0Jtynbqa+YtSGrVcCAD06aJ6Zv0IxnsUn7ENHFOvaqx/ns/XC6Or/oPXJCxiU1dwqs+72oD6ReXvynk0tfCLxJl9s+CJW7fn6C+cVVrxuyEL9TGv7g4WKsCICwmtTZ9FePfXASMcS5STjcFAh5vU6B4wjLCpMKeMZZvmWDGmMHjQHUVcwGTmSwTO/vJWMp6qetIWMbIMmUelBDXMJF8MexTozIm5uZn3KpJyNelEY1Kj64vXcQ0UYZq+dHPkvCc+CZxCZWj+Tyo/nI+r+AV5cPtxGJm+atyLOXvwqwpA6SPPw8sz/eRPfJ2YrXNtQYAAAPKSURBVEmCqlmK8LHvoBgM1crl52ZHdXnZCPflcASM8XDMnGM8Ah5v47FbRc7w3OXZG5dwq3LF53U5eVcjK/4x4wBSFw8+HJBDFs0Yk12st1LFSbyQs2tKioBZTSCFPVMAyouuCZr4SNhq+bkI5UIik+2nDlni6a+4h1DeK6O4qIlFSzonvklcghi1/XvIrHDa3TSdWCjxnPI3ZVniuguzZv3sn4XEcV/lmD4sa2UsQvjU8dzMX8MAKASQn0bBZF8UAf45CgFjfBR8zjwQAY+3gYCtNzkkpbYEF57TPJ9ZUoJgHOTypaQ/ZdEIlkbXY5/tqc+NUWeTYBLWNCkS0Uxz7DXkKp66bZYFMY1aNORjSfqxsCiwaiYO1yg3ajgn0nFghtOYJRkmja4pH3kwj2V5iS+kqGpIw6GbmC4X32oZOf4uXMCkILWSA1zavraRg0Wu/FOMj7nHUxdmTcwjmWcs5JgcLMtybpW++T0IRifGf03cTNwkcYDOL8H512CMz7+P19RCj7c19cYIWfT8ZRnyiWx1/xzPaF77UZIv+ePp04+JaoaOA4gRRLH69Yl7umYZiyVJyAwEptB26RqiVJChEE488hAOYSVdnCAhqY9k47WiRhnKrmJSLQQlBbJyKpcl2NorUqoJK340cLSp1ag82v4XJfhVLphGAvmGODLKZUWMOJbDYzz9xXXsr058KecI04ULfYGsBWGVWzuAUqmzD4tO+VXuJOOjUs7c46kLsxIWycP4AMO7sijDaid2dZ0yfVjW8ty4uLigsfxr4/1GrSrnWi5fGAEjYASMgBE4YwQ0H/KOs+/kHqWUUH4IGe/J69qftxkkj8Hl3LDI7bQ+zBQP2SuIvfyQOEgi76JsHXuKyxpXSgcBp+wbN+WxMQJGwAgYASNgBOoIMAnnaFnqua5fobXp1O5dz7LqkGNwOTcscjuqFTMRMTTFVS0umlq0nK96Ch+MpQlfD6KONgJGwAgYgf0hoImYZWf2oaFJGWVCXsqgrLMwY3E5RyxyO7QNM4VD9njvYHN1lfHCQZ1i7MllJbY0IXzwuDLhKyG0xwgYASNgBIxADQH2Arbt5aslbLkg77H7CVuKPmnwGFzOFYvcjqhhFkgbezKvLdsqDO0dh4PQ/KW0w6OwrO7hSwnNcf1zHKyptjrMCBgBI2AEjEANAc2BaFk42DJIS6f07J1KaW9q5W/1Yggu545Fbh8OwaytzC4sFce+00Ir2MyvuBsQvtuK4ERIynBqKJ78ScU7zAgYASNgBIyAETACRuDECAQymJRCcX/7f8iiJF/JI87uAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle \\left[\\begin{matrix}-3.0 & 0 & 0 & 0\\\\0 & 3.0 \\cos^{2}{\\left(t \\right)} & 0 & 0\\\\0 & 0 & 3.0 \\cos^{2}{\\left(t \\right)} \\sinh^{2}{\\left(\\chi \\right)} & 0\\\\0 & 0 & 0 & 3.0 \\sin^{2}{\\left(\\theta \\right)} \\cos^{2}{\\left(t \\right)} \\sinh^{2}{\\left(\\chi \\right)}\\end{matrix}\\right]$" ], "text/plain": [ "⎡-3.0 0 0 0 ⎤\n", "⎢ ⎥\n", "⎢ 2 ⎥\n", "⎢ 0 3.0⋅cos (t) 0 0 ⎥\n", "⎢ ⎥\n", "⎢ 2 2 ⎥\n", "⎢ 0 0 3.0⋅cos (t)⋅sinh (χ) 0 ⎥\n", "⎢ ⎥\n", "⎢ 2 2 2 ⎥\n", "⎣ 0 0 0 3.0⋅sin (θ)⋅cos (t)⋅sinh (χ)⎦" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "einst = EinsteinTensor.from_metric(metric)\n", "einst.tensor()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5" } }, "nbformat": 4, "nbformat_minor": 2 }