{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Weyl Tensor calculations using Symbolic module" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import sympy\n", "from sympy import cos, sin, sinh\n", "from einsteinpy.symbolic import MetricTensor, WeylTensor\n", "\n", "sympy.init_printing()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Defining the Anti-de Sitter spacetime Metric" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "syms = sympy.symbols(\"t chi theta phi\")\n", "t, ch, th, ph = syms\n", "m = sympy.diag(-1, cos(t) ** 2, cos(t) ** 2 * sinh(ch) ** 2, cos(t) ** 2 * sinh(ch) ** 2 * sin(th) ** 2).tolist()\n", "metric = MetricTensor(m, syms)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Calculating the Weyl Tensor (with all indices covariant)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlwAAAGPCAYAAACJXg6sAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4Ae2dQY4USZO2a0asUamRWrMupDnAACegvhsAi9lDHwGhWcxsixvAAWYDN6BvUKIOMFL3AVoCoT7AzG/WpPOHZ0R5ZWfFa+YV/oQU8nD3SH/DntcKLDOqMv7pP//zP//t5OTks+1L28f/+q//er40YeNHvW5pLcZiCZh3v5ni2ZKqzf3T0nj0GPkVTXxdvd5zjPxa1+/o1civaOJj6R2bXze97t4E41s79v+Ip9vv0841x8e+7prlGA4gcLGg8Q8be7Ywnj1EfmU7cJz+Xckx8us4f7NfRX5lO7Bt/WPzq/m6acH1zqqzQwqsfczHvm5/HfpBBMzn9/tSNuZDPRZc5Ne+WXegf4dyjPy6A/m0f4nk1z4R+msSODa/bnrdtOBa83qrtewiStX3xSYe2n5hY8cUd9W6h3TQPglnfogva56Dx/EeZzJfM3cOWSszVrTjc/uQnFjznFE9doajxf7PaybO0loG1H8/7NLa17b7x/evbf9kx4u/Q7S0xrFjaMczP9arY1+Hx/EeZzI/Nk+OfV1mrGjH5/axeXLs60b12HmNGLu04DKgr4zrqbUfS0La8Tc79v67MqZo0Y5nrvCxtSYex3ucybyVC4q5zFjRjs9tRQ611hzVY2cyauzSgsu4+l84Xjngve3S+ucG/XRvfM0u2jXNCOa1or6HxzXjCI8zmdfR6nuZsaJd+xuR27Wivjeqx052yNjVBde5gf26kLf+KZdvPq/a0K7JRjCvFfU9PK4ZR3icybyOVt/LjBXt2t+I3K4V9b1RPXayQ8YuK7gO/PTqJ0VOo92kKmHeVBRM4nETqsTjTObNaAWTmbGi3TRUkttNRcHkqB47ypFjlxVcxrX8YJR3JtO0LZ96nU4HVzxGew5TzXyuqB3B4zlftceZzOfRakcyY0V77q06t+eK2pFRPXaqw8auLLgOSdcHh5wkOgdtEdiOlsXjeDMymUdHmxkr2tFux+uN6rGT3mTsyoKrvCNZStNS4fp3RCk2tOdU1cznitoRPJ7zVXucyXwerXYkM1a0596qc3uuqB0Z1WOnOmzssoLL7tOWW4lLtw3LmOTLT9E+KXyn/2SUMQnzqVDEMR7He5zJPCKnphqZsaIdn9tT7yOOR/XY2Y4cu6zg2iXtr9ae7Y6nTXm34vOqDe2abATzWlHfw+OacYTHmczraPW9zFjRrv2NyO1aUd8b1WMnO2Ts6oLrg4F9vJC3j2zsalLpLpxy6yG0a4QRzGtFfQ+Pa8YRHmcyr6PV9zJjRbv2NyK3a0V9b1SPneyQsUsLLiuo/CHJX6398VBkO/ZbWy9sf2m7bEM7nrnMzGsWxuN4jzOZX5MGsuHMWNGOz21ZIl2z8KgeO45RY793TS6sOezvTN4Y4HJr8Yn1n1r/ak2Ra9ZC+zuYSObXWCEbxuN4jzOZyxLpmoUzY0U7PrevSQPZ8KgeO9DhYpcXXFZYfTOw/sDq8A3tcOThgngcjvwkk3l0tJmxoh3tdrzeqB476RFjl95SjE9fFCEAAQhAAAIQgEB/BCi4+vOEK4IABCAAAQhAYGMEKLg2ZijhQAACEIAABCDQHwEKrv484YogAAEIQAACENgYAQqujRlKOBCAAAQgAAEI9EeAgqs/T7giCEAAAhCAAAQ2RoCCa2OGEg4EIAABCEAAAv0RoODqzxOuCAIQgAAEIACBjRGg4NqYoYQDAQhAAAIQgEB/BCi4+vOEK4IABCAAAQhAYGME5I/2cV72Ff4XO25frH1o+4WN/b4bkzZon4Qzlxq6sDgex3ucyXwhBaRDmbGiHZ/b0mRaWHxUjx3FaLHLP+EyoJ+N66W1r21/a8f+XMVPdnxmrXRDO5651NCFxfE43uNM5gspIB3KjBXt+NyWJtPC4qN67ChGjF1acBnQV8b11NqPJdfs2B9m7f13ZUzRoh3PXOFja008jvc4k3krFxRzmbGiHZ/bihxqrTmqx85k1NilBZdxfW77lQPe2y6tf27QT/fG1+yiXdOMYF4r6nt4XDOO8DiTeR2tvpcZK9q1vxG5XSvqe6N67GSHjF1dcJ0b2K8Leeufcvnm86oN7ZpsBPNaUd/D45pxhMeZzOto9b3MWNGu/Y3I7VpR3xvVYyc7ZOyyguvAT69+UuQ02k2qEuZNRcEkHjehSjzOZN6MVjCZGSvaTUMlud1UFEyO6rGjHDl2WcFlXMsPRnlnMk3b8qnX6XRwxWO05zDVzOeK2hE8nvNVe5zJfB6tdiQzVrTn3qpze66oHRnVY6c6bOzKguuQdH1wyEmic9AWge1oWTyONyOTeXS0mbGiHe12vN6oHjvpTcbuBdf9XR6Vdte9sSnnl3b/BV/3Byb9UuH6d0QpNrTnVG9i/vP8JakjJa9Ku38xeLxP5P+/c+z156qnHCt5Vdp9muTXPhHya07k+pGSV6XdP3PU/HIOdzX2Y//9+vE62Sdcdp+23Epcum1YxiRffor2SeE7/SEvYxLmU6GIYzyO9ziTeUROTTUyY0U7Pren3kccj+qxsx05di+4/twlWGl33Rubcn5pl17wqw2eLUz8tBvzedWGdk32JuZ/1Ken90pelXbpgvC4pnKTx/XZx/Vuw7ynHCt5VdolGreJdWm9vzOGdk3rkNwmv2pmrV5mfvl1Zeofq31sfv14newTrp3TH6x9vDueNo+sczWpdKdzax2jXZOMYF4r6nt4XDOO8DiTeR2tvpcZK9q1vxG5XSvqe6N67GSHjF1acFlB9d7AfrX2WcldO/ZbWy9sf1nGFC3a8cwVPrbWxON4jzOZt3JBMZcZK9rxua3Iodaao3rsTEaN/V4rIVaa83cmbwxwubX4xPpPrX+10vqtZdD+TieSecsPxRwex3ucyVyRQ601M2NFOz63W7mgmBvVY2c5XOzygssKq28G1h9YHb6hHY48XBCPw5GfZDKPjjYzVrSj3Y7XG9VjJz1i7NJbivHpiyIEIAABCEAAAhDojwAFV3+ecEUQgAAEIAABCGyMAAXXxgwlHAhAAAIQgAAE+iNAwdWfJ1wRBCAAAQhAAAIbI0DBtTFDCQcCEIAABCAAgf4IUHD15wlXBAEIQAACEIDAxgh4weXP1vvF9tYDJZfCPvZ1S2sxlk/AH3fgedDLRn714sR619FTjpFf6/nay0rkVy9ObPM6js2vH6/zguvM9ne2l2dVHYrq2Ncduj7nxRI4NznPg1428qsXJ9a7jp5yjPxaz9deViK/enFim9dxbH79eN0/b5MLUUEAAhCAAAQgAIF+CFBw9eMFVwIBCEAAAhCAwEYJ3IuIy77C/2Kn88Xah7Zf2Jj/DoV8Q/sknLnc1D0BPI73OJP5nv3ybmasaMfntjyh9gRG9dgxjBa7/BMuA/rZuF5a+9r2t3bsz1X8ZMf+OxTSDe145lJDFxbH43iPM5kvpIB0KDNWtONzW5pMC4uP6rGjGDF2acFlQF8Z11NrP5Zcs2N/mLX3pb+gjXY88+JxVIvH8R5nMo/Kq6KTGSva8bldfI9qR/XY+Y4au7TgMq7Pbb9ywHvbpfXPDfrp3viaXbRrmhHMa0V9D49rxhEeZzKvo9X3MmNFu/Y3IrdrRX1vVI+d7JCxqwsu/3PIpe/38k+5fPN51YZ2TTaCea2o7+FxzTjC40zmdbT6XmasaNf+RuR2rajvjeqxkx0ydlnBdeCnV3/3u78O+hFAu4lJwrypKJjE4yZUiceZzJvRCiYzY0W7aagkt5uKgslRPXaUI8cuK7iMa/nBKO9MpmlbPvU6nQ6ueIz2HKaa+VxRO4LHc75qjzOZz6PVjmTGivbcW3VuzxW1I6N67FSHjV1ZcB2Srg8OOUl0DtoisB0ti8fxZmQyj442M1a0o92O1xvVYye9ydi94Lq/y6PS7rq3bso7kqWFSoXr3xGl2NCeU1UznytqR/B4zlftcSbzebTakcxY0Z57q87tuaJ2ZFSPneposf9cUskLrj93ndKWuVu1dp+23Epcum1YxiRffor2SeE79bCMSZhPhSKO8Tje40zmETk11ciMFe343J56H3E8qsfOdsDY/yg5pb6l6E/JPitik7a8W/F51YZ2TTaCea2o7+FxzTjC40zmdbT6XmasaNf+RuR2rajvjeqxkx0ydnXB9cHAPl7I20c2djWpdBdOufUQ2jXCCOa1or6HxzXjCI8zmdfR6nuZsaJd+xuR27Wivjeqx052yNilBZcVVO8N7Fdrn5XctWO/tfXC9pdlTNGiHc9c4WNrTTyO9ziTeSsXFHOZsaIdn9uKHGqtOarHzmTU2O+1EmKlOX9n8sYAl1uLT6z/1PpXK63fWgbt73Qimbf8UMzhcbzHmcwVOdRaMzNWtONzu5ULirlRPXaWw8UuL7issPpmYP2B1eEb2uHIwwXxOBz5SSbz6GgzY0U72u14vVE9dtIjxi69pRifvihCAAIQgAAEIACB/ghQcPXnCVcEAQhAAAIQgMDGCFBwbcxQwoEABCAAAQhAoD8CFFz9ecIVQQACEIAABCCwMQIUXBszlHAgAAEIQAACEOiPAAVXf55wRRCAAAQgAAEIbIyAF1z+bL1fbG89UHJjYRMOBCAAAQhAAAIQkBPwxxh5jXXiBdeZ7e9sL8+qskM2CEAAAhCAAAQgAIFbEji313uN9VfBdcu1eDkEIAABCEAAAhCAQIsAv8PVosMcBCAAAQhAAAIQWIGA/NE+fo32Ff4Xu2v9Yu1D2y9szH93TL6hfRLOXG7qngAex3ucyXzPfnk3M1a043NbnlB7AqN67BhGi13+CZcB/WxcL619bftbO/bnKn6yY//dMemGdjxzqaELi+NxvMeZzBdSQDqUGSva8bktTaaFxUf12FGMGLu04DKgr4zrqbUfS67ZsT/M2vt//RJZGV+7RTue+doe3rQeHsd7nMn8pnxYez4zVrTjc3vt/LlpvVE9di6jxi4tuIzrc9uvHPDedmn9c4N+uje+ZhftmmYE81pR38PjmnGEx5nM62j1vcxY0a79jcjtWlHfG9VjJztk7OqCy/8ccun7vfxTLt98XrWhXZONYF4r6nt4XDOO8DiTeR2tvpcZK9q1vxG5XSvqe6N67GSHjF1WcB346ZXku7/Qbv5LIWHeVBRM4nETqsTjTObNaAWTmbGi3TRUkttNRcHkqB47ypFjlxVcxrX8YJR3JtO0LZ96nU4HVzxGew5TzXyuqB3B4zlftceZzOfRakcyY0V77q06t+eK2pFRPXaqw8auLLgOSdcHh5wkOgdtEdiOlsXjeDMymUdHmxkr2tFux+uN6rGT3mTsXnDd3+VRaXfdWzflHcnSQqXC9e+IUmxoz6mqmc8VtSN4POer9jiT+Txa7UhmrGjPvVXn9lxROzKqx051tNh/LqnkBdefu05py9ytWrtPW24lLt02LGOSLz9F+6TwnXpYxiTMp0IRx3gc73Em84icmmpkxop2fG5PvY84HtVjZztg7H+UnFLfUvSnZJ8VsUlb3q34vGpDuyYbwbxW1PfwuGYc4XEm8zpafS8zVrRrfyNyu1bU90b12MkOGbu64PpgYB8v5O0jG7uaVLoLp9x6CO0aYQTzWlHfw+OacYTHmczraPW9zFjRrv2NyO1aUd8b1WMnO2Ts0oLLCqr3Bvartc9K7tqx39p6YfvLMqZo0Y5nrvCxtSYex3ucybyVC4q5zFjRjs9tRQ611hzVY2cyauz3Wgmx0py/M3ljgMutxSfWf2r9q5XWby2D9nc6kcxbfijm8Dje40zmihxqrZkZK9rxud3KBcXcqB47y+FilxdcVlh9M7D+wOrwDe1w5OGCeByO/CSTeXS0mbGiHe12vN6oHjvpEWOX3lKMT18UIQABCEAAAhCAQH8EKLj684QrggAEIAABCEBgYwQouDZmKOFAAAIQgAAEINAfAQqu/jzhiiAAAQhAAAIQ2BgBCq6NGUo4EIAABCAAAQj0R2CNv1L8zf7aYD+yjzb2fH+Qfh8EzJvf7ErO+riaG6+C/LoRUX8n3KEcI7/6S58br4j8uhERJ9yCgCq//BMuf7beL7a3Hii5dOn3lwZ3Y//SmGMqn0DLu/yr+34FrWskv3px6frraPl3/aviZlrXR37F+XCsUsu/Y9dc83Wt6yO/1iStWavl399V9McYeY114p9w+Scd72z3Qf/OrEO3P3cnvrXWPzGZbpt4QPI0oI0d/8dCPP+wsR9PBFiYjx4iv6KJr6vXe46RX+v6Hb0a+RVNfCy9NfPr3NB5jfV+jVuK7+zjNwqsO5SM5pc/cqnabMz7PRVc5frIr0LiDrV3KMfIrzuUV+VSya9CglZBQJVf/NK8wi3WhAAEIAABCEAAAhMCa3zCNVlu+dCqxYvdzBdrH9p+YWMhn4qhfRLOfDkLdKN4HO9xJnNdJi2vnBkr2vG5vZwFutFRPXaio8Uu/4TLgH42rpfWvrbdf9/Ln6v4yY79d8ekG9rxzKWGLiyOx/EeZzJfSAHpUGasaMfntjSZFhYf1WNHMWLs0oLLgL4yrqfWfiy5Zsf+i/ne918ik21oxzOXmXnNwngc73Em82vSQDacGSva8bktS6RrFh7VY8cxauzSgsu4+ndxXTngve3S+ucG/XRvfM0u2jXNCOa1or6HxzXjCI8zmdfR6nuZsaJd+xuR27Wivjeqx052yNjVBZf/OeTXhbwtXz/h86oN7ZpsBPNaUd/D45pxhMeZzOto9b3MWNGu/Y3I7VpR3xvVYyc7ZOyyguvAT69+UuQ02k2qEuZNRcEkHjehSjzOZN6MVjCZGSvaTUMlud1UFEyO6rGjHDl2WcFlXMsPRnlnMk3b8qnX6XRwxWO05zDVzOeK2hE8nvNVe5zJfB6tdiQzVrTn3qpze66oHRnVY6c6bOzKguuQdH1wyEmic9AWge1oWTyONyOTeXS0mbGiHe12vN6oHjvpTcbuBdf9XR6Vdte9dVPekSwtVCpc/44oxYb2nKqa+VxRO4LHc75qjzOZz6PVjmTGivbcW3VuzxW1I6N67FRHi/3nkkpecP2565S2zN2qtfu05Vbi0m3DMib58lO0TwrfqYdlTMJ8KhRxjMfxHmcyj8ipqUZmrGjH5/bU+4jjUT12tgPG/kfJKfUtRX8g9lkRm7Tl3YrPqza0a7IRzGtFfQ+Pa8YRHmcyr6PV9zJjRbv2NyK3a0V9b1SPneyQsasLrg8G9vFC3j6ysatJpbtwyq2H0K4RRjCvFfU9PK4ZR3icybyOVt/LjBXt2t+I3K4V9b1RPXayQ8YuLbisoHpvYL9a+6zkrh37ra0Xtr8sY4oW7XjmCh9ba+JxvMeZzFu5oJjLjBXt+NxW5FBrzVE9diajxn6vlRArzfk7kzcGuNxafGL9p9a/Wmn91jJof6cTybzlh2IOj+M9zmSuyKHWmpmxoh2f261cUMyN6rGzHC52ecFlhdU3A+sPrA7f0A5HHi6Ix+HITzKZR0ebGSva0W7H643qsZMeMXbpLcX49EURAhCAAAQgAAEI9EeAgqs/T7giCEAAAhCAAAQ2RoCCa2OGEg4EIAABCEAAAv0RoODqzxOuCAIQgAAEIACBjRGg4NqYoYQDAQhAAAIQgEB/BCi4+vOEK4IABCAAAQhAYGMEvODyZ+v9YnvrgZIbC5twIAABCEAAAhCAgJyAP8bIa6wTL7jObH9ne3lWlR2yQQACEIAABCAAAQjcksC5vd5rrL8KrluuxcshAAEIQAACEIAABFoE+B2uFh3mIAABCEAAAhCAwAoE5I/28Wu0r/C/2F3rF2sf2n5hY/67Y/IN7ZNw5nJT9wTwON7jTOZ79su7mbGiHZ/b8oTaExjVY8cwWuzyT7gM6Gfjemnta9vf2rE/V/GTHfvvjkk3tOOZSw1dWByP4z3OZL6QAtKhzFjRjs9taTItLD6qx45ixNilBZcBfWVcT639WHLNjv1h1t7/65fIyvjaLdrxzNf28Kb18Dje40zmN+XD2vOZsaIdn9tr589N643qsXMZNXZpwWVcn9t+5YD3tkvrnxv0073xNbto1zQjmNeK+h4e14wjPM5kXker72XGinbtb0Ru14r63qgeO9khY1cXXP7nkEvf7+Wfcvnm86oN7ZpsBPNaUd/D45pxhMeZzOto9b3MWNGu/Y3I7VpR3xvVYyc7ZOyyguvAT68k3/2FdvNfCgnzpqJgEo+bUCUeZzJvRiuYzIwV7aahktxuKgomR/XYUY4cu6zgMq7lB6O8M5mmbfnU63Q6uOIx2nOYauZzRe0IHs/5qj3OZD6PVjuSGSvac2/VuT1X1I6M6rFTHTZ2ZcF1SLo+OOQk0Tloi8B2tCwex5uRyTw62sxY0Y52O15vVI+d9CZj94Lr/i6PSrvr3tj4O47/tv1/rzmzvCNZmi4Vrn9HlGJDe071Jub/Yy9xP3vZyK9lJ+5ybveUY+QX+bVMYJ1R8ut6jnf137Bj//36uaDwguvPXae0Ze6m1v8D/3fbFz8ls/u05Vbi0m3DMib58lO0TwrfqYdl7Drm/7rzc/qazGPya4H+Hc/tnnKM/CK/FgisNkR+XYPyDv8bduy/X38UFIvFUplcofWnZJ8trOPJ6JvPqza0a7IRzGtFfQ+Pa8YRHmcyr6PV9zJjRbv2NyK3a0V9b1SPneyQsasLrg8G9vFC3j6ysatJpbtwyq2H0K4RRjCvFfU9PK4ZR3icybyOVt/LjBXt2t+I3K4V9b1RPXayQ8YuLbisoHpvYL9a+6zkrh37ra0Xtr8sY4oW7XjmCh9ba+JxvMeZzFu5oJjLjBXt+NxW5FBrzVE9diajxn6vlRArzfk7kzcGuNxafGL9p9a/Wmn91jJof6cTybzlh2IOj+M9zmSuyKHWmpmxoh2f261cUMyN6rGzHC52ecFlhdU3A+sPrA7f0A5HHi6Ix+HITzKZR0ebGSva0W7H643qsZMeMXbpLcX49EURAhCAAAQgAAEI9EeAgqs/T7giCEAAAhCAAAQ2RoCCa2OGEg4EIAABCEAAAv0RoODqzxOuCAIQgAAEIACBjRGg4NqYoYQDAQhAAAIQgEB/BLzgur+7rNIeepXl/NIe+jrO65PAj+c9dXJ5Ja9K28llcRm3INBTjpW8Ku0twuKlnRAgvzoxYqOXcWx+/XidF1x/7uCU9lBW5fzSHvo6zuuTwI/nPXVyeSWvStvJZXEZtyDQU46VvCrtLcLipZ0QIL86MWKjl3Fsfv14HbcUN5oZhAUBCEAAAhCAQD8EKLj68YIrgQAEIAABCEBgowQouDZqLGFBAAIQgAAEINAPAfmjfTxU+wr/i13IX6x9aPuFjf2+G5M2aJ+EM5caurA4Hsd7nMl8IQWkQ5mxoh2f29JkWlh8VI8dxWixyz/hMqCfjeulta9tf2vH/lzFT3Z8Zq10QzueudTQhcXxON7jTOYLKSAdyowV7fjclibTwuKjeuwoRoxdWnAZ0FfG9dTajyXX7NgfZu39d2VM0aIdz1zhY2tNPI73OJN5KxcUc5mxoh2f24ocaq05qsfOZNTYpQWXcX1u+5UD3tsurX9u0E/3xtfsol3TjGBeK+p7eFwzjvA4k3kdrb6XGSvatb8RuV0r6nujeuxkh4xdXXCdG9ivC3nrn3L55vOqDe2abATzWlHfw+OacYTHmczraPW9zFjRrv2NyO1aUd8b1WMnO2TssoLrwE+vflLkNNpNqhLmTUXBJB43oUo8zmTejFYwmRkr2k1DJbndVBRMjuqxoxw5dlnBZVzLD0Z5ZzJN2/Kp1+l0cMVjtOcw1cznitoRPJ7zVXucyXwerXYkM1a0596qc3uuqB0Z1WOnOmzsyoLrkHR9cMhJonPQFoHtaFk8jjcjk3l0tJmxoh3tdrzeqB476U3Gfs8C8+/D+sX28g7CDm/e7GPBKzvrnxpnttYrFa5/R5RiQ3tOtcnc/HxvL/G9i438utaGO5vbPeUY+UV+XUtghQnyqwnxTv4bdot/v341Gl5jnfgnXGe2+1c0lP+Q7fDmzcT/zfb/s91fP9tsvNxKXLptWMYkX36K9knhO/WljC0yN2avbP+/6Qsyj+1ayK8FA+5ybveUY+TXQnLZEPm1zOXvjpJf1xO7qzlm133s/5H+BwJ/fQ2W+paiV3ZLBVkp7nxetaFdk41gXivqe3hcM47wOJN5Ha2+lxkr2rW/EbldK+p7o3rsZIeMXV1wfTCwjxfy9pGNXU0q3YVTbj2Edo0wgnmtqO/hcc04wuNM5nW0+l5mrGjX/kbkdq2o743qsZMdMnZpwWUFlf9O0Fdrn5XctWO/tfXC9pdlTNGiHc9c4WNrTTyO9ziTeSsXFHOZsaIdn9uKHGqtOarHzmTU2P2X5tWbvzN5Y4DLrcUn1n9q/Su1sK2P9nfIkcwDbK0k8Dje40zmlfkBncxY0Y7P7YCUqiRG9dghDBe7vOCywuqbgfUHVodvaIcjDxfE43DkJ5nMo6PNjBXtaLfj9Ub12EmPGLv0lmJ8+qIIAQhAAAIQgAAE+iNAwdWfJ1wRBCAAAQhAAAIbI0DBtTFDCQcCEIAABCAAgf4IUHD15wlXBAEIQAACEIDAxghQcG3MUMKBAAQgAAEIQKA/Al5w3d9dVmn7u0quCAIQgAAEIAABCNw9Aj+XS/aC689dp7RljhYCEIAABCAAAQhA4HgCf5SXckuxkKCFAAQgAAEIQAACIgIUXCKwLAsBCEAAAhCAAAQKAQquQoIWAhCAAAQgAAEIiAjIH+3j121f4X+xu/4v1j60/cLGft+NSRu0T8KZSw1dWByP4z3OZL6QAtKhzFjRjs9taTItLD6qx45itNjln3AZ0M/G9dLa17a/tWN/ruInOz6zVrqhHc9caujC4ngc73Em84UUkA5lxop2fG5Lk2lh8VE9dhQjxi4tuAzoK+N6au3Hkmt27A+z9v67MqZo0Y5nrvCxtSYex3ucybyVC4q5zFjRjs9tRQ611hzVY2cyauzSgsu4PvX5v0oAACAASURBVLf9ygHvbZfWPzfop3vja3bRrmlGMK8V9T08rhlHeJzJvI5W38uMFe3a34jcrhX1vVE9drJDxq4uuM4N7NeFvPVPuXzzedWGdk02gnmtqO/hcc04wuNM5nW0+l5mrGjX/kbkdq2o743qsZMdMnZZwXXgp1c/KXIa7SZVCfOmomASj5tQJR5nMm9GK5jMjBXtpqGS3G4qCiZH9dhRjhy7rOAyruUHo7wzmaZt+dTrdDq44jHac5hq5nNF7Qgez/mqPc5kPo9WO5IZK9pzb9W5PVfUjozqsVMdNnZlwXVIuj445CTROWiLwHa0LB7Hm5HJPDrazFjRjnY7Xm9Uj530JmP3gsu/D+sX28s7CDtcZWutVypc/44oxYb2nKqa+VxRO4LHc75qjzOZz6PVjmTGivbcW3VuzxW1I6N67FRHi/1Xi9lrrBMvuM5s969oKAlth7ff7D5tuZW4dNuwjEm+/BTtk8J3amQZkzCfCkUc43G8x5nMI3JqqpEZK9rxuT31PuJ4VI+d7YCx+x8I/PU1WOpbil7ZeUG3v5XizudVG9o12QjmtaK+h8c14wiPM5nX0ep7mbGiXfsbkdu1or43qsdOdsjY1QXXBwP7eCFvH9nY1aTSXTjl1kNo1wgjmNeK+h4e14wjPM5kXker72XGinbtb0Ru14r63qgeO9khY5cWXFZQvTewX619VnLXjv3W1gvbX5YxRYt2PHOFj6018Tje40zmrVxQzGXGinZ8bityqLXmqB47k1Fjv9dKiJXm/J3JGwNcbi0+sf5T61+ttH5rGbS/04lk3vJDMYfH8R5nMlfkUGvNzFjRjs/tVi4o5kb12FkOF7u84LLC6puB9QdWh29ohyMPF8TjcOQnmcyjo82MFe1ot+P1RvXYSY8Yu/SWYnz6oggBCEAAAhCAAAT6I0DB1Z8nXBEEIAABCEAAAhsjQMG1MUMJBwIQgAAEIACB/ghQcPXnCVcEAQhAAAIQgMDGCFBwbcxQwoEABCAAAQhAoD8C/leK93eXVdq/e5W/2V8b7L/mo4093x+k3wcB8+Y3u5KzPq7mxqsgv25E1N8JdyjHyK/+0ufGKyK/bkTECbcgsHJ+/VwuxT/h+nPXKW2Zu6ltFWj/ctOLmU8l0PIu9cIm4q1rJL8moDo9bPnXwyW3ro/86sGh9jW0/Gu/Mma2dX3kV4wHt1Fp+fd31/2jvOA238NVCrS3tph/YjLdNvGA5GlAGzv+j4V4/mFjP54IsDAfPUR+RRNfV6/3HCO/1vU7ejXyK5r4WHqS/LpNwVXwv7OP3yiwCo070Jpf/silarMx7/dUcJXrI78KiTvU3qEcI7/uUF6VSyW/CglaBQFVfvFL8wq3WBMCEIAABCAAAQhMCKzxCddkueVDqxYvdjNfrH1o+4WNhXwqhvZJOPPlLNCN4nG8x5nMdZm0vHJmrGjH5/ZyFuhGR/XYiY4Wu/wTLgP62bheWvvadv99L3+u4ic7lv+VHNrxzM3b0A2P4z3OZB6aXCaWGSva8blNfsX83+ycR8xvacFlQF8Z11NrP5ZEtmN/mLX335UxRYt2PHOFj6018Tje40zmrVxQzGXGinZ8bityqLXmqB47k1FjlxZcxtW/i+vKAe9tl9Y/N+ine+NrdtGuaUYwrxX1PTyuGUd4nMm8jlbfy4wV7drfiNyuFfW9UT12skPGri64zg3s14W89U+5fPN51YZ2TTaCea2o7+FxzTjC40zmdbT6XmasaNf+RuR2rajvjeqxkx0ydlnBdeCnVz8pchrtJlUJ86aiYBKPm1AlHmcyb0YrmMyMFe2moZLcbioKJkf12FGOHLus4DKu5QejvDOZpm351Ot0OrjiMdpzmGrmc0XtCB7P+ao9zmQ+j1Y7khkr2nNv1bk9V9SOjOqxUx02dmXBdUi6PjjkJNE5aIvAdrQsHsebkck8OtrMWNGOdjteb1SPnfQmY/eCy78P6xfbyzsIO1xla61XKlz/jijFhvacqpr5XFE7gsdzvmqPM5nPo9WOZMaK9txbdW7PFbUjo3rsVEeL/VeL2WusEy+4zmz3r2goCW2Ht9/sPm25lbh027CMSb78FO2TwndqZBmTMJ8KRRzjcbzHmcwjcmqqkRkr2vG5PfU+4nhUj53tgLH7Hwj89TVY6luKXtl5Qbe/leLO51Ub2jXZCOa1or6HxzXjCI8zmdfR6nuZsaJd+xuR27Wivjeqx052yNjVBdcHA/t4IW8f2djVpNJdOOXWQ2jXCCOY14r6Hh7XjCM8zmReR6vvZcaKdu1vRG7XivreqB472SFjlxZcVlC9N7BfrX1WcteO/dbWC9tfljFFi3Y8c4WPrTXxON7jTOatXFDMZcaKdnxuK3KoteaoHjuTUWO/10qIleb8nckbA1xuLT6x/lPrX620fmsZtL/TiWTe8kMxh8fxHmcyV+RQa83MWNGOz+1WLijmRvXYWQ4Xu7zgssLqm4H1B1aHb2iHIw8XxONw5CeZzKOjzYwV7Wi34/VG9dhJjxi79JZifPqiCAEIQAACEIAABPojQMHVnydcEQQgAAEIQAACGyNAwbUxQwkHAhCAAAQgAIH+CFBw9ecJVwQBCEAAAhCAwMYIUHBtzFDCgQAEIAABCECgPwJecN3fXVZp+7tKrggCEIAABCAAAQjcPQI/l0v2guvPXae0ZY4WAhCAAAQgAAEIQOB4An+Ul3JLsZCghQAEIAABCEAAAiICFFwisCwLAQhAAAIQgAAECgEKrkKCFgIQgAAEIAABCIgIyB/t49dtX+F/sbv+L9Y+tP3Cxn7fjUkbtE/CmUsNXVgcj+M9zmS+kALSocxY0Y7PbWkyLSw+qseOYrTY5Z9wGdDPxvXS2te2v7Vjf67iJzs+s1a6oR3PXGrowuJ4HO9xJvOFFJAOZcaKdnxuS5NpYfFRPXYUI8YuLbgM6Cvjemrtx5JrduwPs/b+uzKmaNGOZ67wsbUmHsd7nMm8lQuKucxY0Y7PbUUOtdYc1WNnMmrs0oLLuD63/coB722X1j836Kd742t20a5pRjCvFfU9PK4ZR3icybyOVt/LjBXt2t+I3K4V9b1RPXayQ8auLrjODezXhbz1T7l883nVhnZNNoJ5rajv4XHNOMLjTOZ1tPpeZqxo1/5G5HatqO+N6rGTHTJ2WcF14KdXPylyGu0mVQnzpqJgEo+bUCUeZzJvRiuYzIwV7aahktxuKgomR/XYUY4cu6zgMq7lB6O8M5mmbfnU63Q6uOIx2nOYauZzRe0IHs/5qj3OZD6PVjuSGSvac2/VuT1X1I6M6rFTHTZ2ZcF1SLo+OOQk0Tloi8B2tCwex5uRyTw62sxY0Y52O15vVI+d9CZj94LLvw/rF9vLOwg7PGjz8//b9v+95uzWeqXC9e+IUmxoz6nexPx/7CXuZy8b+bXsxF3O7Z5yjPwiv5YJrDNKfl3P8a7+G3bsv1+/GgqvsU684Dqz3b+iofyHbIcHbX7+v9u++CmZ3acttxKXbhuWMcmXn6J9UvhOjSxj1zH/152f09dkHpNfC/TveG73lGPkF/m1QGC1IfLrGpR3+N+wY//98j8Q+OtrsBaLpWs4HTPslZ0XdPubJ6NvPq/a0K7JRjCvFfU9PK4ZR3icybyOVt/LjBXt2t+I3K4V9b1RPXayQ8auLrg+GNjHC3n7yMauJpXuwim3HkK7RhjBvFbU9/C4ZhzhcSbzOlp9LzNWtGt/I3K7VtT3RvXYyQ4Zu7TgsoLqvYH9au2zkrt27Le2Xtj+sowpWrTjmSt8bK2Jx/EeZzJv5YJiLjNWtONzW5FDrTVH9diZjBr7vVZCrDTn70zeGOBya/GJ9Z9a/2ql9VvLoP2dTiTzlh+KOTyO9ziTuSKHWmtmxop2fG63ckExN6rHznK42OUFlxVW3wysP7A6fEM7HHm4IB6HIz/JZB4dbWasaEe7Ha83qsdOesTYpbcU49MXRQhAAAIQgAAEINAfAQqu/jzhiiAAAQhAAAIQ2BgBCq6NGUo4EIAABCAAAQj0R4CCqz9PuCIIQAACEIAABDZGgIJrY4YSDgQgAAEIQAAC/RHwguv+7rJKe+hVlvNLe+jrOK9PAj93dlklr0rb2eVxOUcQ6CnHSl6V9ohweElnBMivzgzZ2OUcm18/XucF1587KKU9lFE5v7SHvo7z+iTwR2eXVfKqtJ1dHpdzBIGecqzkVWmPCIeXdEaA/OrMkI1dzrH59eN13FLcWEYQDgQgAAEIQAAC/RGg4OrPE64IAhCAAAQgAIGNEaDg2pihhAMBCEAAAhCAQH8E5I/28ZDtK/wvdqF/sfah7Rc29vtuTNqgfRLOXGrowuJ4HO9xJvOFFJAOZcaKdnxuS5NpYfFRPXYUo8Uu/4TLgH42rpfWvrb9rR37cxU/2fGZtdIN7XjmUkMXFsfjeI8zmS+kgHQoM1a043NbmkwLi4/qsaMYMXZpwWVAXxnXU2s/llyzY3+YtffflTFFi3Y8c4WPrTXxON7jTOatXFDMZcaKdnxuK3KoteaoHjuTUWOXFlzG9bntVw54b7u0/rlBP90bX7OLdk0zgnmtqO/hcc04wuNM5nW0+l5mrGjX/kbkdq2o743qsZMdMnZ1wXVuYL8u5K1/yuWbz6s2tGuyEcxrRX0Pj2vGER5nMq+j1fcyY0W79jcit2tFfW9Uj53skLHLCq4DP736SZHTaDepSpg3FQWTeNyEKvE4k3kzWsFkZqxoNw2V5HZTUTA5qseOcuTYZQWXcS0/GOWdyTRty6dep9PBFY/RnsNUM58rakfweM5X7XEm83m02pHMWNGee6vO7bmidmRUj53qsLErC65D0vXBISeJzkFbBLajZfE43oxM5tHRZsaKdrTb8XqjeuykNxm7F1z+fVi/2F7eQdjhKltrvVLh+ndEKTa051TVzOeK2hE8nvNVe5zJfB6tdiQzVrTn3qpze66oHRnVY6c6Wuy/WsxeY514wXVmu39FQ0loO7z9Zvdpy63EpduGZUzy5adonxS+UyPLmIT5VCjiGI/jPc5kHpFTU43MWNGOz+2p9xHHo3rsbAeM3f9A4K+vwVLfUvTKzgu6/a0Udz6v2tCuyUYwrxX1PTyuGUd4nMm8jlbfy4wV7drfiNyuFfW9UT12skPGri64PhjYxwt5+8jGriaV7sIptx5Cu0YYwbxW1PfwuGYc4XEm8zpafS8zVrRrfyNyu1bU90b12MkOGbu04LKC6r2B/Wrts5K7duy3tl7Y/rKMKVq045krfGyticfxHmcyb+WCYi4zVrTjc1uRQ601R/XYmYwa+71WQqw05+9M3hjgcmvxifWfWv9qpfVby6D9nU4k85Yfijk8jvc4k7kih1prZsaKdnxut3JBMTeqx85yuNjlBZcVVt8MrD+wOnxDOxx5uCAehyM/yWQeHW1mrGhHux2vN6rHTnrE2KW3FOPTF0UIQAACEIAABCDQHwEKrv484YogAAEIQAACENgYAQqujRlKOBCAAAQgAAEI9EeAgqs/T7giCEAAAhCAAAQ2RoCCa2OGEg4EIAABCEAAAv0R8ILr/u6yStvfVXJFEIAABCAAAQhA4O4R+Llcshdcf+46pS1ztBCAAAQgAAEIQAACxxP4o7yUW4qFBC0EIAABCEAAAhAQEaDgEoFlWQhAAAIQgAAEIFAIyL9p3oXsG2UvdoJfrH1o+4WN/b4bkzZon4Qzlxq6sDgex3ucyXwhBaRDmbGiHZ/b0mRaWHxUjx3FaLHLP+EyoJ+N66W1r21/a8f+mJ9PdnxmrXRDO5651NCFxfE43uNM5gspIB3KjBXt+NyWJtPC4qN67ChGjF1acBnQV8b11NqPJdfs2J+t6P13ZUzRoh3PXOFja008jvc4k3krFxRzmbGiHZ/bihxqrTmqx85k1NilBZdxfW77lQPe2y6tf27QT/fG1+yiXdOMYF4r6nt4XDOO8DiTeR2tvpcZK9q1vxG5XSvqe6N67GSHjF1dcJ0b2K8Leeufcvnm86oN7ZpsBPNaUd/D45pxhMeZzOto9b3MWNGu/Y3I7VpR3xvVYyc7ZOyyguvAT69+UuQ02k2qEuZNRcEkHjehSjzOZN6MVjCZGSvaTUMlud1UFEyO6rGjHDl2WcFlXMsPRnlnMk3b8qnX6XRwxWO05zDVzOeK2hE8nvNVe5zJfB6tdiQzVrTn3qpze66oHRnVY6c6bOzKguuQdH1wyEmic9AWge1oWTyONyOTeXS0mbGiHe12vN6oHjvpTcbuBdf9XR6Vdte9dVPekSwtVCpc/44oxYb2nKqa+VxRO4LHc75qjzOZz6PVjmTGivbcW3VuzxW1I6N67FRHi13/LEW7T1tuJS7dNixjki8/Rfuk8J3+k1HGJMynQhHHeBzvcSbziJyaamTGinZ8bk+9jzge1WNnO2DsYc9S/NX4ni0kcHm34vOqDe2abATzWlHfw+OacYTHmczraPW9zFjRrv2NyO1aUd8b1WMnO2Ts6t/h+mBgHy/k7SMbu5pUugun3HoI7RphBPNaUd/D45pxhMeZzOto9b3MWNGu/Y3I7VpR3xvVYyc7ZOzSgssKqvcG9qu1z0ru2rHf2nph+8sypmjRjmeu8LG1Jh7He5zJvJULirnMWNGOz21FDrXWHNVjZzJq7PdaCbHSnL8zeWOAy63FJ9Z/av2rldZvLYP2dzqRzFt+KObwON7jTOaKHGqtmRkr2vG53coFxdyoHjvL4WKXF1xWWH0zsP7A6vAN7XDk4YJ4HI78JJN5dLSZsaId7Xa83qgeO+kRY5feUoxPXxQhAAEIQAACEIBAfwQouPrzhCuCAAQgAAEIQGBjBCi4NmYo4UAAAhCAAAQg0B8BCq7+POGKIAABCEAAAhDYGAEKro0ZSjgQgAAEIAABCPRHYI2/UvzN/tpgP7KPNvZ8f5B+HwTMm9/sSs76uJobr4L8uhFRfyfcoRwjv/pLnxuviPy6EREn3IKAKr+84PJn6/1ie+uBkkuXXl533dzSOGN9ELjo4zKaV0F+NfF0P9l7jpFf3adQ8wLJryYeJm9JYM388scYeY114gWXf9LxznYf9O/MOnQrr1s6/6MN+npsfRLw70W77hMufzpADxv51YMLx19D7zlGfh3vbQ+vJL96cGG717Bmfp0bJq+x3nvBddvtrS3gt6imm797ZOuXwFL1/g+73B+PYOro0smvjsz4G5dyV3KM/PobpnZ0KvnVkRkbvBRJfq1RcL2z+50UWHco48yv2adYNuYR9FhwkV93KLfKpd6hHCO/iml3qCW/7pBZd/BSVfm1RsF1I067+FItfrGTH9p+YWMhRRraJ+HMb0yIlU/A43iPM5mvnD43LpcZK9rxuX1jQqx8wqgeO8bRYv/nlXNntpwB/WyDl9a+tt0/vvd7o5/s+LrfIZqtcewA2vHMj/Xq2NfhcbzHmcyPzZNjX5cZK9rxuX1snhz7ulE9dl4jxi4tuAzoK+N6aq3/Ev1fmx37L+Z733+JTLahHc9cZuY1C+NxvMeZzK9JA9lwZqxox+e2LJGuWXhUjx3HqLFLCy7j6t/FdeWA97ZL658b9NO98TW7aNc0I5jXivoeHteMIzzOZF5Hq+9lxop27W9EbteK+t6oHjvZIWNXF1znBnbp+73K10/4vGpDuyYbwbxW1PfwuGYc4XEm8zpafS8zVrRrfyNyu1bU90b12MkOGbus4Drw06ufFDmNdpOqhHlTUTCJx02oEo8zmTejFUxmxop201BJbjcVBZOjeuwoR45dVnAZ1/KDUd6ZTNO2fOp1Oh1c8RjtOUw187midgSP53zVHmcyn0erHcmMFe25t+rcnitqR0b12KkOG7uy4DokXR8ccpLoHLRFYDtaFo/jzchkHh1tZqxoR7sdrzeqx056k7F7wXV/l0el3XVv3ZR3JEsLlQrXvyNKsaE9p6pmPlfUjuDxnK/a40zm82i1I5mxoj33Vp3bc0XtyKgeO9XRYv+5pJIXXH/uOqUtc7dq7T5tuZW4dNuwjEm+/BTtk8J36mEZkzCfCkUc43G8x5nMI3JqqpEZK9rxuT31PuJ4VI+d7YCx/1FySn1L0R9gfVbEJm15t6J8wDXaE+B2GMG8VtT38LhmHOFxJvM6Wn0vM1a0a38jcrtW1PdG9djJDhm7uuD6YGAfL+TtIxu7mlS6C6fcegjtGmEE81pR38PjmnGEx5nM62j1vcxY0a79jcjtWlHfG9VjJztk7NKCywoqf0jyV2t/PBTZjv3W1gvbX9ou29COZy4z85qF8Tje40zm16SBbDgzVrTjc1uWSNcsPKrHjmPU2O9dkwtrDvs7kzcGuNxafGL9p9a/WlPkmrXQ/g4mkvk1VsiG8Tje40zmskS6ZuHMWNGOz+1r0kA2PKrHDnS42OUFlxVW3wysP7A6fEM7HHm4IB6HIz/JZB4dbWasaEe7Ha83qsdOesTYpbcU49MXRQhAAAIQgAAEINAfAQqu/jzhiiAAAQhAAAIQ2BgBCq6NGUo4EIAABCAAAQj0R4CCqz9PuCIIQAACEIAABDZGgIJrY4YSDgQgAAEIQAAC/RGg4OrPE64IAhCAAAQgAIGNEfCCy5+t94vtrQdKbixswoEABCAAAQhAAAJyAv4YI6+xTrzgOrP9ne3lWVV2yAYBCEAAAhCAAAQgcEsC5/Z6r7H+KrhuuRYvhwAEIAABCEAAAhBoEeB3uFp0mIMABCAAAQhAAAIrEJA/2sev0b7C/2J3rV+sfWj7hY35747JN7RPwpnLTd0TwON4jzOZ79kv72bGinZ8bssTak9gVI8dw2ixyz/hMqCfjeulta9tf2vH/lzFT3bsvzsm3dCOZy41dGFxPI73OJP5QgpIhzJjRTs+t6XJtLD4qB47ihFjlxZcBvSVcT219mPJNTv2h1l7/69fIivja7doxzNf28Ob1sPjeI8zmd+UD2vPZ8aKdnxur50/N603qsfOZdTYpQWXcX1u+5UD3tsurX9u0E/3xtfsol3TjGBeK+p7eFwzjvA4k3kdrb6XGSvatb8RuV0r6nujeuxkh4xdXXD5n0Mufb+Xf8rlm8+rNrRrshHMa0V9D49rxhEeZzKvo9X3MmNFu/Y3IrdrRX1vVI+d7JCxywquAz+9knz3F9rNfykkzJuKgkk8bkKVeJzJvBmtYDIzVrSbhkpyu6komBzVY0c5cuyygsu4lh+M8s5kmrblU6/T6eCKx2jPYaqZzxW1I3g856v2OJP5PFrtSGasaM+9Vef2XFE7MqrHTnXY2JUF1yHp+uCQk0TnoC0C29GyeBxvRibz6GgzY0U72u14vVE9dtKbjN0Lrvu7PCrtrntjU84v7f4Lvu4PTPqlwvXviFJsaM+p3sT85/lLUkdKXpV2/2LweJ/I/3/n2OvPVU85VvKqtPs0ya99IuTXnMj1IyWvSrt/5qj55RzuauzH/vv143VecP25y4TS7rq3a+w+bbmVuHTbsIxJvvwU7ZPCd2piGZMwnwpFHONxvMeZzCNyaqqRGSva8bk99T7ieFSPne2Asf9Rcuo2txRLgVbasua09adkn00Hdsc/7VqfV21o12RvYv4jKeqXpfVKXpV26ULwuKZyk8f12cf1bsO8pxwreVXaJRq3iXVpvb8zhnZN65DcJr9qZq1eZn75dWXqH6t96/y6TcHVMrPMfbCDx6UzaR/Z8dWk0p1MrXaIdo0ygnmtqO/hcc04wuNM5nW0+l5mrGjX/kbkdq2o743qsZMdMnZpwWUF1XsD+9XaZyV37dhvbb2w/WUZU7RoxzNX+NhaE4/jPc5k3soFxVxmrGjH57Yih1prjuqxMxk19nuthFhpzt+ZvDHA5dbiE+s/tf7VSuu3lkH7O51I5i0/FHN4HO9xJnNFDrXWzIwV7fjcbuWCYm5Uj53lcLHLCy4rrL4ZWH9gdfiGdjjycEE8Dkd+ksk8OtrMWNGOdjteb1SPnfSIsUtvKcanL4oQgAAEIAABCECgPwIUXP15whVBAAIQgAAEILAxAhRcGzOUcCAAAQhAAAIQ6I8ABVd/nnBFEIAABCAAAQhsjAAF18YMJRwIQAACEIAABPojQMHVnydcEQQgAAEIQAACGyPgBZc/W+8X21sPlFwK+9jXLa3FWD4Bf9yB50EvG/nVixPrXUdPOUZ+redrLyuRX704sc3rODa/frzOC64z29/ZXp5VdSiqY1936PqcF0vg3OQ8D3rZyK9enFjvOnrKMfJrPV97WYn86sWJbV7Hsfn143X/vE0uRAUBCEAAAhCAAAT6IUDB1Y8XXAkEIAABCEAAAhslcC8iLvsK/4udzhdrH9p+YWP+OxTyDe2TcOZyU/cE8Dje40zme/bLu5mxoh2f2/KE2hMY1WPHMFrs8k+4DOhn43pp7Wvb39qxP1fxkx3771BIN7TjmUsNXVgcj+M9zmS+kALSocxY0Y7PbWkyLSw+qseOYsTYpQWXAX1lXE+t/VhyzY79Ydbel/6CNtrxzIvHUS0ex3ucyTwqr4pOZqxox+d28T2qHdVj5ztq7NKCy7g+t/3KAe9tl9Y/N+ine+NrdtGuaUYwrxX1PTyuGUd4nMm8jlbfy4wV7drfiNyuFfW9UT12skPGri64/M8hl77fyz/l8s3nVRvaNdkI5rWivofHNeMIjzOZ19Hqe5mxol37G5HbtaK+N6rHTnbI2GUF14GfXv3d7/466EcA7SYmCfOmomASj5tQJR5nMm9GK5jMjBXtpqGS3G4qCiZH9dhRjhy7rOAyruUHo7wzmaZt+dTrdDq44jHac5hq5nNF7Qgez/mqPc5kPo9WO5IZK9pzb9W5PVfUjozqsVMdNnZlwXVIuj445CTROWiLwHa0LB7Hm5HJPDrazFjRjnY7Xm9Uj530JmNXFlzlHclSmpYK178jSrGhPaeqZj5X1I7g8Zyv2uNM5vNotSOZsaI991ad23NF7cioHjvVYWOXFVx2n7bcPFte3AAABgBJREFUSly6bVjGJF9+ivZJ4Tv9J6OMSZhPhSKO8Tje40zmETk11ciMFe343J56H3E8qsfOduTYZQXXLmn9Kdlnu+NpU96t+LxqQ7smG8G8VtT38LhmHOFxJvM6Wn0vM1a0a38jcrtW1PdG9djJDhm7uuD6YGAfL+TtIxu7mlS6C6fcegjtGmEE81pR38PjmnGEx5nM62j1vcxY0a79jcjtWlHfG9VjJztk7NKCywqq9wb2q7XPSu7asd/aemH7yzKmaNGOZ67wsbUmHsd7nMm8lQuKucxY0Y7PbUUOtdYc1WNnMmrs91oJsdKcvzN5Y4DLrcUn1n9q/auV1m8tg/Z3OpHMW34o5vA43uNM5oocaq2ZGSva8bndygXF3KgeO8vhYpcXXFZYfTOw/sDq8A3tcOThgngcjvwkk3l0tJmxoh3tdrzeqB476RFjl95SjE9fFCEAAQhAAAIQgEB/BCi4+vOEK4IABCAAAQhAYGMEKLg2ZijhQAACEIAABCDQHwEKrv484YogAAEIQAACENgYAQqujRlKOBCAAAQgAAEI9EeAgqs/T7giCEAAAhCAAAQ2RoCCa2OGEg4EIAABCEAAAv0RoODqzxOuCAIQgAAEIACBjRGg4NqYoYQDAQhAAAIQgEB/BCi4+vOEK4IABCAAAQhAYGME5I/2cV72Ff4XO25frH1o+4WN/b4bkzZon4Qzlxq6sDgex3ucyXwhBaRDmbGiHZ/b0mRaWHxUjx3FaLHLP+EyoJ+N66W1r21/a8f+XMVPdnxmrXRDO5651NCFxfE43uNM5gspIB3KjBXt+NyWJtPC4qN67ChGjF1acBnQV8b11NqPJdfs2B9m7f13ZUzRoh3PXOFja008jvc4k3krFxRzmbGiHZ/bihxqrTmqx85k1NilBZdxfW77lQPe2y6tf27QT/fG1+yiXdOMYF4r6nt4XDOO8DiTeR2tvpcZK9q1vxG5XSvqe6N67GSHjF1dcJ0b2K8Leeufcvnm86oN7ZpsBPNaUd/D45pxhMeZzOto9b3MWNGu/Y3I7VpR3xvVYyc7ZOyyguvAT69+UuQ02k2qEuZNRcEkHjehSjzOZN6MVjCZGSvaTUMlud1UFEyO6rGjHDl2WcFlXMsPRnlnMk3b8qnX6XRwxWO05zDVzOeK2hE8nvNVe5zJfB6tdiQzVrTn3qpze66oHRnVY6c6bOzKguuQdH1wyEmic9AWge1oWTyONyOTeXS0mbGiHe12vN6oHjvpTcauLLjKO5KlNC0Vrn9HlGJDe05VzXyuqB3B4zlftceZzOfRakcyY0V77q06t+eK2pFRPXaqw8YuK7jsPm25lbh027CMSb78FO2Twnf6T0YZkzCfCkUc43G8x5nMI3JqqpEZK9rxuT31PuJ4VI+d7cixywquXdL+au3Z7njalHcrPq/a0K7JRjCvFfU9PK4ZR3icybyOVt/LjBXt2t+I3K4V9b1RPXayQ8auLrg+GNjHC3n7yMauJpXuwim3HkK7RhjBvFbU9/C4ZhzhcSbzOlp9LzNWtGt/I3K7VtT3RvXYyQ4Zu7TgsoLqvYH9au2zkrt27Le2Xtj+sowpWrTjmSt8bK2Jx/EeZzJv5YJiLjNWtONzW5FDrTVH9diZjBr7vVZCrDTn70zeGOBya/GJ9Z9a/2ql9VvLoP2dTiTzlh+KOTyO9ziTuSKHWmtmxop2fG63ckExN6rHznK42OUFlxVW3wysP7A6fEM7HHm4IB6HIz/JZB4dbWasaEe7Ha83qsdOesTYpbcU49MXRQhAAAIQgAAEINAfAQqu/jzhiiAAAQhAAAIQ2BgBCq6NGUo4EIAABCAAAQj0R4CCqz9PuCIIQAACEIAABDZGgIJrY4YSDgQgAAEIQAAC/RGY/pXib/ZXA/tX+NHGnu8P7vWPfd3eMnSjCJinv5nWWZTeLXXIr1sCzHj5Hcox8isjQW6pSX7dEiAvbxI4Nr9uep0XXP5svV+uUW89d+/Y110jxXAggYtArWOlyK9jyfXxut5zjPzqI0+OvQry61hyvO4QAsfmV/N1/w/fbc/u2AduawAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle \\left[\\begin{matrix}\\left[\\begin{matrix}0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\end{matrix}\\right] & \\left[\\begin{matrix}0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\end{matrix}\\right] & \\left[\\begin{matrix}0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\end{matrix}\\right] & \\left[\\begin{matrix}0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\end{matrix}\\right]\\\\\\left[\\begin{matrix}0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\end{matrix}\\right] & \\left[\\begin{matrix}0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\end{matrix}\\right] & \\left[\\begin{matrix}0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\end{matrix}\\right] & \\left[\\begin{matrix}0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\end{matrix}\\right]\\\\\\left[\\begin{matrix}0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\end{matrix}\\right] & \\left[\\begin{matrix}0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\end{matrix}\\right] & \\left[\\begin{matrix}0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\end{matrix}\\right] & \\left[\\begin{matrix}0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\end{matrix}\\right]\\\\\\left[\\begin{matrix}0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\end{matrix}\\right] & \\left[\\begin{matrix}0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\end{matrix}\\right] & \\left[\\begin{matrix}0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\end{matrix}\\right] & \\left[\\begin{matrix}0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0\\end{matrix}\\right]\\end{matrix}\\right]$" ], "text/plain": [ "⎡⎡0 0 0 0⎤ ⎡0 0 0 0⎤ ⎡0 0 0 0⎤ ⎡0 0 0 0⎤⎤\n", "⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥\n", "⎢⎢0 0 0 0⎥ ⎢0 0 0 0⎥ ⎢0 0 0 0⎥ ⎢0 0 0 0⎥⎥\n", "⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥\n", "⎢⎢0 0 0 0⎥ ⎢0 0 0 0⎥ ⎢0 0 0 0⎥ ⎢0 0 0 0⎥⎥\n", "⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥\n", "⎢⎣0 0 0 0⎦ ⎣0 0 0 0⎦ ⎣0 0 0 0⎦ ⎣0 0 0 0⎦⎥\n", "⎢ ⎥\n", "⎢⎡0 0 0 0⎤ ⎡0 0 0 0⎤ ⎡0 0 0 0⎤ ⎡0 0 0 0⎤⎥\n", "⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥\n", "⎢⎢0 0 0 0⎥ ⎢0 0 0 0⎥ ⎢0 0 0 0⎥ ⎢0 0 0 0⎥⎥\n", "⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥\n", "⎢⎢0 0 0 0⎥ ⎢0 0 0 0⎥ ⎢0 0 0 0⎥ ⎢0 0 0 0⎥⎥\n", "⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥\n", "⎢⎣0 0 0 0⎦ ⎣0 0 0 0⎦ ⎣0 0 0 0⎦ ⎣0 0 0 0⎦⎥\n", "⎢ ⎥\n", "⎢⎡0 0 0 0⎤ ⎡0 0 0 0⎤ ⎡0 0 0 0⎤ ⎡0 0 0 0⎤⎥\n", "⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥\n", "⎢⎢0 0 0 0⎥ ⎢0 0 0 0⎥ ⎢0 0 0 0⎥ ⎢0 0 0 0⎥⎥\n", "⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥\n", "⎢⎢0 0 0 0⎥ ⎢0 0 0 0⎥ ⎢0 0 0 0⎥ ⎢0 0 0 0⎥⎥\n", "⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥\n", "⎢⎣0 0 0 0⎦ ⎣0 0 0 0⎦ ⎣0 0 0 0⎦ ⎣0 0 0 0⎦⎥\n", "⎢ ⎥\n", "⎢⎡0 0 0 0⎤ ⎡0 0 0 0⎤ ⎡0 0 0 0⎤ ⎡0 0 0 0⎤⎥\n", "⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥\n", "⎢⎢0 0 0 0⎥ ⎢0 0 0 0⎥ ⎢0 0 0 0⎥ ⎢0 0 0 0⎥⎥\n", "⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥\n", "⎢⎢0 0 0 0⎥ ⎢0 0 0 0⎥ ⎢0 0 0 0⎥ ⎢0 0 0 0⎥⎥\n", "⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥\n", "⎣⎣0 0 0 0⎦ ⎣0 0 0 0⎦ ⎣0 0 0 0⎦ ⎣0 0 0 0⎦⎦" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "weyl = WeylTensor.from_metric(metric)\n", "weyl.tensor()" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'llll'" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "weyl.config" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5" } }, "nbformat": 4, "nbformat_minor": 2 }