# Symbolically Understanding Christoffel Symbol and Riemann Curvature Tensor using EinsteinPy¶

[1]:

import sympy
from einsteinpy.symbolic import MetricTensor, ChristoffelSymbols, RiemannCurvatureTensor

sympy.init_printing()  # enables the best printing available in an environment


## Defining the metric tensor for 3d spherical coordinates¶

[2]:

syms = sympy.symbols('r theta phi')
# define the metric for 3d spherical coordinates
metric = [[0 for i in range(3)] for i in range(3)]
metric[0][0] = 1
metric[1][1] = syms[0]**2
metric[2][2] = (syms[0]**2)*(sympy.sin(syms[1])**2)
# creating metric object
m_obj = MetricTensor(metric, syms)
m_obj.tensor()

[2]:

$\displaystyle \left[\begin{matrix}1 & 0 & 0\\0 & r^{2} & 0\\0 & 0 & r^{2} \sin^{2}{\left(\theta \right)}\end{matrix}\right]$

## Calculating the christoffel symbols¶

[3]:

ch = ChristoffelSymbols.from_metric(m_obj)
ch.tensor()

[3]:

$\displaystyle \left[\begin{matrix}\left[\begin{matrix}0 & 0 & 0\\0 & - r & 0\\0 & 0 & - r \sin^{2}{\left(\theta \right)}\end{matrix}\right] & \left[\begin{matrix}0 & \frac{1}{r} & 0\\\frac{1}{r} & 0 & 0\\0 & 0 & - \sin{\left(\theta \right)} \cos{\left(\theta \right)}\end{matrix}\right] & \left[\begin{matrix}0 & 0 & \frac{1}{r}\\0 & 0 & \frac{\cos{\left(\theta \right)}}{\sin{\left(\theta \right)}}\\\frac{1}{r} & \frac{\cos{\left(\theta \right)}}{\sin{\left(\theta \right)}} & 0\end{matrix}\right]\end{matrix}\right]$
[4]:

ch.tensor()[1,1,0]

[4]:

$\displaystyle \frac{1}{r}$

## Calculating the Riemann Curvature tensor¶

[5]:

# Calculating Riemann Tensor from Christoffel Symbols
rm1 = RiemannCurvatureTensor.from_christoffels(ch)
rm1.tensor()

[5]:

$\displaystyle \left[\begin{matrix}\left[\begin{matrix}0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0\end{matrix}\right] & \left[\begin{matrix}0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0\end{matrix}\right] & \left[\begin{matrix}0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0\end{matrix}\right]\\\left[\begin{matrix}0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0\end{matrix}\right] & \left[\begin{matrix}0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0\end{matrix}\right] & \left[\begin{matrix}0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0\end{matrix}\right]\\\left[\begin{matrix}0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0\end{matrix}\right] & \left[\begin{matrix}0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0\end{matrix}\right] & \left[\begin{matrix}0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0\end{matrix}\right]\end{matrix}\right]$
[6]:

# Calculating Riemann Tensor from Metric Tensor
rm2 = RiemannCurvatureTensor.from_metric(m_obj)
rm2.tensor()

[6]:

$\displaystyle \left[\begin{matrix}\left[\begin{matrix}0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0\end{matrix}\right] & \left[\begin{matrix}0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0\end{matrix}\right] & \left[\begin{matrix}0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0\end{matrix}\right]\\\left[\begin{matrix}0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0\end{matrix}\right] & \left[\begin{matrix}0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0\end{matrix}\right] & \left[\begin{matrix}0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0\end{matrix}\right]\\\left[\begin{matrix}0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0\end{matrix}\right] & \left[\begin{matrix}0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0\end{matrix}\right] & \left[\begin{matrix}0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0\end{matrix}\right]\end{matrix}\right]$

## Calculating the christoffel symbols for Schwarzschild Spacetime Metric¶

• The expressions are unsimplified

[7]:

syms = sympy.symbols("t r theta phi")
G, M, c, a = sympy.symbols("G M c a")
# using metric values of schwarschild space-time
list2d = [[0 for i in range(4)] for i in range(4)]
list2d[0][0] = 1 - (a / syms[1])
list2d[1][1] = -1 / ((1 - (a / syms[1])) * (c ** 2))
list2d[2][2] = -1 * (syms[1] ** 2) / (c ** 2)
list2d[3][3] = -1 * (syms[1] ** 2) * (sympy.sin(syms[2]) ** 2) / (c ** 2)
sch = MetricTensor(list2d, syms)
sch.tensor()

[7]:

$\displaystyle \left[\begin{matrix}- \frac{a}{r} + 1 & 0 & 0 & 0\\0 & - \frac{1}{c^{2} \left(- \frac{a}{r} + 1\right)} & 0 & 0\\0 & 0 & - \frac{r^{2}}{c^{2}} & 0\\0 & 0 & 0 & - \frac{r^{2} \sin^{2}{\left(\theta \right)}}{c^{2}}\end{matrix}\right]$
[8]:

# single substitution
subs1 = sch.subs(a,0)
subs1.tensor()

[8]:

$\displaystyle \left[\begin{matrix}1 & 0 & 0 & 0\\0 & - \frac{1}{c^{2}} & 0 & 0\\0 & 0 & - \frac{r^{2}}{c^{2}} & 0\\0 & 0 & 0 & - \frac{r^{2} \sin^{2}{\left(\theta \right)}}{c^{2}}\end{matrix}\right]$
[9]:

# multiple substitution
subs2 = sch.subs([(a,0), (c,1)])
subs2.tensor()

[9]:

$\displaystyle \left[\begin{matrix}1 & 0 & 0 & 0\\0 & -1 & 0 & 0\\0 & 0 & - r^{2} & 0\\0 & 0 & 0 & - r^{2} \sin^{2}{\left(\theta \right)}\end{matrix}\right]$
[10]:

sch_ch = ChristoffelSymbols.from_metric(sch)
sch_ch.tensor()

[10]:

$\displaystyle \left[\begin{matrix}\left[\begin{matrix}0 & \frac{a}{2 r^{2} \left(- \frac{a}{r} + 1\right)} & 0 & 0\\\frac{a}{2 r^{2} \left(- \frac{a}{r} + 1\right)} & 0 & 0 & 0\\0 & 0 & 0 & 0\\0 & 0 & 0 & 0\end{matrix}\right] & \left[\begin{matrix}\frac{a c^{2} \left(- \frac{a}{r} + 1\right)}{2 r^{2}} & 0 & 0 & 0\\0 & - \frac{a}{2 r^{2} \left(- \frac{a}{r} + 1\right)} & 0 & 0\\0 & 0 & - r \left(- \frac{a}{r} + 1\right) & 0\\0 & 0 & 0 & - r \left(- \frac{a}{r} + 1\right) \sin^{2}{\left(\theta \right)}\end{matrix}\right] & \left[\begin{matrix}0 & 0 & 0 & 0\\0 & 0 & \frac{1}{r} & 0\\0 & \frac{1}{r} & 0 & 0\\0 & 0 & 0 & - \sin{\left(\theta \right)} \cos{\left(\theta \right)}\end{matrix}\right] & \left[\begin{matrix}0 & 0 & 0 & 0\\0 & 0 & 0 & \frac{1}{r}\\0 & 0 & 0 & \frac{\cos{\left(\theta \right)}}{\sin{\left(\theta \right)}}\\0 & \frac{1}{r} & \frac{\cos{\left(\theta \right)}}{\sin{\left(\theta \right)}} & 0\end{matrix}\right]\end{matrix}\right]$

## Calculating the simplified expressions¶

[11]:

simplified = sch_ch.simplify()
simplified

[11]:

$\displaystyle \left[\begin{matrix}\left[\begin{matrix}0 & \frac{a}{2 r \left(- a + r\right)} & 0 & 0\\\frac{a}{2 r \left(- a + r\right)} & 0 & 0 & 0\\0 & 0 & 0 & 0\\0 & 0 & 0 & 0\end{matrix}\right] & \left[\begin{matrix}\frac{a c^{2} \left(- a + r\right)}{2 r^{3}} & 0 & 0 & 0\\0 & \frac{a}{2 r \left(a - r\right)} & 0 & 0\\0 & 0 & a - r & 0\\0 & 0 & 0 & \left(a - r\right) \sin^{2}{\left(\theta \right)}\end{matrix}\right] & \left[\begin{matrix}0 & 0 & 0 & 0\\0 & 0 & \frac{1}{r} & 0\\0 & \frac{1}{r} & 0 & 0\\0 & 0 & 0 & - \frac{\sin{\left(2 \theta \right)}}{2}\end{matrix}\right] & \left[\begin{matrix}0 & 0 & 0 & 0\\0 & 0 & 0 & \frac{1}{r}\\0 & 0 & 0 & \frac{1}{\tan{\left(\theta \right)}}\\0 & \frac{1}{r} & \frac{1}{\tan{\left(\theta \right)}} & 0\end{matrix}\right]\end{matrix}\right]$