User guide¶

Defining the geometry: metric objects¶

EinsteinPy provides a way to define the background geometry on which the code would deal with the dynamics. These geometry has a central operating quantity known as metric tensor and encapsulate all the geometrical and topological information about the 4d spacetime in them.

• The central quantity required to simulate trajectory of a particle in a gravitational field is christoffel symbols.

• EinsteinPy provides an easy to use interface to calculate these symbols.

Schwarzschild metric¶

EinsteinPy provides an easy interface for calculating time-like geodesics in Schwarzschild Geometry.

First of all, we import all the relevant modules and classes :

import numpy as np
from astropy import units as u
from einsteinpy.coordinates import SphericalDifferential, CartesianDifferential
from einsteinpy.metric import Schwarzschild

From position and velocity in Spherical Coordinates¶

There are several methods available to create Schwarzschild objects. For example, if we have the position and velocity vectors we can use from_spherical():

M = 5.972e24 * u.kg
sph_coord = SphericalDifferential(306.0 * u.m, np.pi/2 * u.rad, -np.pi/6*u.rad,
obj = Schwarzschild.from_coords(sph_coord, M , 0* u.s)

From position and velocity in Cartesian Coordinates¶

For initializing with Cartesian Coordinates, we can use from_cartesian:

cartsn_coord = CartesianDifferential(.265003774 * u.km, -153.000000e-03 * u.km,  0 * u.km,
145.45557 * u.km/u.s, 251.93643748389 * u.km/u.s, 0 * u.km/u.s)
obj = Schwarzschild.from_coords(cartsn_coord, M , 0* u.s)

Calculating Trajectory/Time-like Geodesics¶

After creating the object we can call calculate_trajectory

end_tau = 0.01 # approximately equal to coordinate time
stepsize = 0.3e-6
ans = obj.calculate_trajectory(end_lambda=end_tau, OdeMethodKwargs={"stepsize":stepsize})
print(ans)
(array([0.00000000e+00, 2.40000000e-07, 2.64000000e-06, ...,
9.99367909e-03, 9.99607909e-03, 9.99847909e-03]), array([[ 0.00000000e+00,  3.06000000e+02,  1.57079633e+00, ...,
0.00000000e+00,  0.00000000e+00,  9.50690000e+02],
[ 2.39996635e-07,  3.05999885e+02,  1.57079633e+00, ...,
-9.55164950e+02,  1.32822112e-17,  9.50690712e+02],
[ 2.63996298e-06,  3.05986131e+02,  1.57079633e+00, ...,
-1.05071184e+04,  1.46121838e-16,  9.50776184e+02],
...,
[ 9.99381048e-03,  3.05156192e+02,  1.57079633e+00, ...,
8.30642520e+04, -1.99760372e-12,  9.55955926e+02],
[ 9.99621044e-03,  3.05344028e+02,  1.57079633e+00, ...,
7.34673728e+04, -2.01494258e-12,  9.54780155e+02],
[ 9.99861041e-03,  3.05508844e+02,  1.57079633e+00, ...,
6.38811856e+04, -2.03252073e-12,  9.53750261e+02]]))

Return value can be obtained in Cartesian Coordinates by :

ans = obj.calculate_trajectory(end_lambda=end_tau, OdeMethodKwargs={"stepsize":stepsize}, return_cartesian=True)

Bodies Module: bodies¶

EinsteinPy has a module to define the attractor and revolving bodies, using which plotting and geodesic calculation becomes much easier.

Importing all the relevant modules and classes :

import numpy as np
from astropy import units as u
from einsteinpy.coordinates import BoyerLindquistDifferential
from einsteinpy.metric import Kerr
from einsteinpy.bodies import Body
from einsteinpy.geodesic import Geodesic

Defining various astronomical bodies :

spin_factor = 0.3 * u.m
Attractor = Body(name="BH", mass = 1.989e30 * u.kg, a = spin_factor)
BL_obj = BoyerLindquistDifferential(50e5 * u.km, np.pi / 2 * u.rad, np.pi * u.rad,
0 * u.km / u.s, 0 * u.rad / u.s, 0 * u.rad / u.s,
spin_factor)
Particle = Body(differential = BL_obj, parent = Attractor)
geodesic = Geodesic(body = Particle, end_lambda = ((1 * u.year).to(u.s)).value / 930,
step_size = ((0.02 * u.min).to(u.s)).value,
metric=Kerr)
geodesic.trajectory  # get the values of the trajectory

Plotting the trajectory :

from einsteinpy.plotting import ScatterGeodesicPlotter
obj = ScatterGeodesicPlotter()
obj.plot(geodesic)
obj.show()

Utilities: utils¶

EinsteinPy provides a great set of utility functions which are frequently used in general and numerical relativity.

• Conversion of Coordinates (both position & velocity)

• Cartesian/Spherical

• Cartesian/Boyer-Lindquist

• Symbolic calculation of relevant terms in GR

• Christoffel Symbols

• Riemann Curvature Tensor

• Calculation of Schwarzschild Geometry related quantities

• Rate of change of coordinate time w.r.t. proper time

Coordinate Conversion¶

In a short example, we would see coordinate conversion between Cartesian and Boyer-Lindquist Coordinates.

Using the functions:

• to_cartesian

• to_bl

import numpy as np
from astropy import units as u
from einsteinpy.coordinates import BoyerLindquistDifferential, CartesianDifferential, Cartesian, BoyerLindquist

a = 0.5 * u.km

pos_vec = Cartesian(.265003774 * u.km, -153.000000e-03 * u.km,  0 * u.km)

bl_pos = pos_vec.to_bl(a)
print(bl_pos)

cartsn_pos = bl_pos.to_cartesian(a)
print(cartsn_pos)

pos_vel_coord = CartesianDifferential(.265003774 * u.km, -153.000000e-03 * u.km,  0 * u.km,
145.45557 * u.km/u.s, 251.93643748389 * u.km/u.s, 0 * u.km/u.s)

bl_coord = pos_vel_coord.bl_differential(a)
bl_coord = bl_coord.si_values()
bl_vel = bl_coord[3:]
print(bl_vel)

cartsn_coord = bl_coord.cartesian_differential(a)
cartsn_coord = cartsn_coord.si_values()
cartsn_vel = cartsn_coord[3:]
print(cartsn_vel)

[ 200.  -100.    20.5]
[224.54398697   1.47937288  -0.46364761]

Symbolic Calculations¶

EinsteinPy also supports smbolic calculations in christoffel

import sympy
from einsteinpy.symbolic import SchwarzschildMetric, ChristoffelSymbols

m = SchwarzschildMetric()
ch = ChristoffelSymbols.from_metric(m)
print(ch[1,2,:])
[0, 0, -r*(-a/r + 1), 0]

Future Plans¶

• Support for null-geodesics in different geometries

• Ultimate goal is providing numerical solutions for Einstein’s equations for arbitarily complex matter distribution.

• Relativistic hydrodynamics