User guide

Defining the geometry: metric objects

EinsteinPy provides a way to define the background geometry, on which the code would deal with the relativistic dynamics. This geometry has a central operating quantity, known as the Metric Tensor, that encapsulates all the geometrical and topological information about the 4D spacetime.

  • EinsteinPy provides a BaseMetric class, that has various utility functions and a proper template, that can be used to define custom Metric classes. All pre-defined classes in metric derive from this class.

  • The central quantity required to simulate trajectory of a particle in a gravitational field are the metric derivatives, that can be succinctly written using Christoffel Symbols.

  • EinsteinPy provides an easy to use interface to calculate these symbols.

  • BaseMetric also provides support for f_vec and perturbation, where f_vec corresponds to the RHS of the geodesic equation and perturbation is a linear Kerr-Schild Perturbation, that can be defined on the underlying metric.

  • Note that, EinsteinPy does not perform physical checks on perturbation currently, and so, users should exercise caution while using it.

We provide an example below, showing how to calculate Time-like Geodesics in Schwarzschild spacetime.

Schwarzschild Metric

EinsteinPy provides an intuitive interface for calculating time-like geodesics in Schwarzschild spacetime.

First of all, we import all the relevant modules and classes:

import numpy as np

from einsteinpy.coordinates.utils import four_position, stacked_vec
from einsteinpy.geodesic import Geodesic
from einsteinpy.metric import Schwarzschild

Defining initial parameters and our Metric Object

Now, we define the initial parameters, that specify the Schwarzschild metric and our test particle.

M = 6e24  # Mass
t = 0.  # Coordinate Time (has no effect in this case, as Schwarzschild metric is static)
x_vec = np.array([130.0, np.pi / 2, -np.pi / 8])  # 3-Position of test particle
v_vec = np.array([0.0, 0.0, 1900.0])  # 3-Velocity of test particle

ms_cov = Schwarzschild(M=M) # Schwarzschild Metric Object
x_4vec = four_position(t, x_vec) # Getting Position 4-Vector
ms_cov_mat = ms_cov.metric_covariant(x_4vec) # Calculating Schwarzschild Metric at x_4vec
init_vec = stacked_vec(ms_cov_mat, t, x_vec, v_vec, time_like=True) # Contains 4-Pos and 4-Vel

Calculating Trajectory/Time-like Geodesic

After creating the metric object and the initial vector, we can use Geodesic to create a Geodesic object, that automatically calculates the trajectory.

# Calculating Geodesic
geod = Geodesic(metric=ms_cov, init_vec=init_vec, end_lambda=0.002, step_size=5e-8)
# Getting a descriptive summary on geod
print(geod)
Geodesic Object:

Metric = ((
Name: (Schwarzschild Metric),
Coordinates: (S),
Mass: (6e+24),
Spin parameter: (0),
Charge: (0),
Schwarzschild Radius: (0.008911392322942397)
)),

Initial Vector = ([ 0.00000000e+00  1.30000000e+02  1.57079633e+00 -3.92699082e-01
1.00003462e+00  0.00000000e+00  0.00000000e+00  1.90000000e+03]),

Trajectory = ([[ 0.00000000e+00  1.20104339e+02 -4.97488462e+01 ...  9.45228078e+04
2.28198245e+05  0.00000000e+00]
[ 4.00013846e-08  1.20108103e+02 -4.97397110e+01 ...  9.36471118e+04
2.28560931e+05 -5.80379473e-14]
[ 4.40015231e-07  1.20143810e+02 -4.96475618e+01 ...  8.48885265e+04
2.32184177e+05 -6.38424865e-13]
...
[ 1.99928576e-03  1.29695466e+02 -6.52793459e-01 ...  1.20900076e+05
2.46971585e+05 -1.86135457e-10]
[ 1.99968577e-03  1.29741922e+02 -5.53995726e-01 ...  1.11380963e+05
2.47015864e+05 -1.74024168e-10]
[ 2.00008578e-03  1.29784572e+02 -4.55181739e-01 ...  1.01868292e+05
2.47052855e+05 -1.61922169e-10]])

Bodies Module: bodies

EinsteinPy has a module to define the attractor and revolving bodies, using which plotting and geodesic calculation becomes much easier.

Importing all the relevant modules and classes :

import numpy as np
from astropy import units as u
from einsteinpy.coordinates import BoyerLindquistDifferential
from einsteinpy.metric import Kerr
from einsteinpy.bodies import Body
from einsteinpy.geodesic import Geodesic

Defining various astronomical bodies :

spin_factor = 0.3 * u.m
Attractor = Body(name="BH", mass = 1.989e30 * u.kg, a = spin_factor)
BL_obj = BoyerLindquistDifferential(50e5 * u.km, np.pi / 2 * u.rad, np.pi * u.rad,
                                    0 * u.km / u.s, 0 * u.rad / u.s, 0 * u.rad / u.s,
                                    spin_factor)
Particle = Body(differential = BL_obj, parent = Attractor)
geodesic = Geodesic(body = Particle, end_lambda = ((1 * u.year).to(u.s)).value / 930,
                    step_size = ((0.02 * u.min).to(u.s)).value,
                    metric=Kerr)
geodesic.trajectory  # get the values of the trajectory

Plotting the trajectory :

from einsteinpy.plotting import GeodesicPlotter
obj = GeodesicPlotter()
obj.plot(geodesic)
obj.show()

Utilities: utils

EinsteinPy provides a great set of utility functions which are frequently used in general and numerical relativity.

  • Conversion of Coordinates (both position & velocity)

  • Cartesian/Spherical

  • Cartesian/Boyer-Lindquist

  • Calculation of Schwarzschild Geometry related quantities

  • Schwarzschild Radius

  • Rate of change of coordinate time w.r.t. proper time

Coordinate Conversion

In a short example, we would see coordinate conversion between Cartesian and Boyer-Lindquist Coordinates.

Using the functions:

  • to_cartesian

  • to_bl

    import numpy as np
    from astropy import units as u
    from einsteinpy.coordinates import BoyerLindquistDifferential, CartesianDifferential, Cartesian, BoyerLindquist
    
    a = 0.5 * u.km
    
    pos_vec = Cartesian(.265003774 * u.km, -153.000000e-03 * u.km,  0 * u.km)
    
    bl_pos = pos_vec.to_bl(a)
    print(bl_pos)
    
    cartsn_pos = bl_pos.to_cartesian(a)
    print(cartsn_pos)
    
    pos_vel_coord = CartesianDifferential(.265003774 * u.km, -153.000000e-03 * u.km,  0 * u.km,
                              145.45557 * u.km/u.s, 251.93643748389 * u.km/u.s, 0 * u.km/u.s)
    
    bl_coord = pos_vel_coord.bl_differential(a)
    bl_coord = bl_coord.si_values()
    bl_vel = bl_coord[3:]
    print(bl_vel)
    
    cartsn_coord = bl_coord.cartesian_differential(a)
    cartsn_coord = cartsn_coord.si_values()
    cartsn_vel = cartsn_coord[3:]
    print(cartsn_vel)
    
    [ 200.  -100.    20.5]
    [224.54398697   1.47937288  -0.46364761]
    

Symbolic Calculations

EinsteinPy also supports symbolic calculations in symbolic

import sympy
from einsteinpy.symbolic import SchwarzschildMetric, ChristoffelSymbols

m = SchwarzschildMetric()
ch = ChristoffelSymbols.from_metric(m)
print(ch[1,2,:])
[0, 0, -r*(-a/r + 1), 0]
import sympy
from einsteinpy.symbolic import SchwarzschildMetric, EinsteinTensor

m = SchwarzschildMetric()
G1 = EinsteinTensor.from_metric(m)
print(G1.arr)
[[a*c**2*(-a + r)/r**4 + a*c**2*(a - r)/r**4, 0, 0, 0], [0, a/(r**2*(a - r)) + a/(r**2*(-a + r)), 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

Future Plans

  • Support for null-geodesics in different geometries

  • Ultimate goal is providing numerical solutions for Einstein’s equations for arbitrarily complex matter distribution.

  • Relativistic hydrodynamics